Sophia Bush | Mia McKenna-Bruce | HD Rip 1921

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas."

Transcripción

1 CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.- Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: Caras o polígonos que lo limitan. Aristas o lados de las caras. Vértices o puntos de corte de las aristas. Diagonales o segmentos que unen dos vértices de distintas caras. Además: Si el poliedro tiene alguna cara que no se puede apoyar sobre el plano, es un poliedro cóncavo. Si se puede apoyar sobre el plano por cualquiera de sus caras, se llama convexo. Poliedro convexo Poliedro cóncavo POLIEDROS REGULARES.- Los poliedros regulares son aquellos cuyas caras son polígonos regulares iguales y en cada vértice concurren el mismo número de caras. Sólo existen cinco poliedros regulares. A continuación te mostramos cada uno de ellos con su definición:

2 Tetraedro Cubo Octaedro Dodecaedro Icosaedro 4 caras 6 caras 8 caras caras 0 caras triángulos equiláteros cuadrados triángulos equiláteros pentágonos triángulos equiláteros PRISMAS.- Los primas son poliedros cuyas bases son dos polígonos iguales y paralelos y sus caras laterales, son paralelogramos. La altura de un prisma es el segmento perpendicular a sus bases (su medida es la distancia entre las bases) Podemos clasificar los prismas de la siguiente manera: Atendiendo a los polígonos de sus bases pueden ser: Triangulares: Sus bases son triángulos. Cuadrangulares: Sus bases son cuadrados. Pentagonales: sus bases son pentágonos, etc. Atendiendo a los polígonos (regulares o no) de sus bases, pueden ser: Regulares: Los polígonos de las bases son regulares. Irregulares: Los polígonos de las bases no son regulares. Atendiendo a la posición de las aristas laterales respecto de las bases, pueden ser: Rectos: Si las aristas laterales son perpendiculares a las bases, es decir, sus caras laterales son rectángulos. Oblicuos: Si las aristas laterales no son perpendiculares a las bases. Prisma rectangular recto (regular) Base pentágono regular Prisma cuadrangular oblicuo (irregular) Base cuadrado

3 Entre los prismas, son importantes: PARALELEPÍPEDOS: Los paralelepípedos son prismas cuyas bases son paralelogramos (luego sus 6 caras son paralelogramos). Los paralelepípedos son: Ortoedro Hexaedro o cubo Romboedro Romboidedro Caras: rectángulos caras: cuadrados caras: rombos caras: romboides PIRÁMIDES.- Las pirámides son poliedros que tienen por base un polígono y sus caras laterales son triángulos con un vértice común, llamado vértice de la pirámide. Los elementos más característicos de la pirámide, además de los generales de los poliedros, son: Altura: es la distancia del vértice al plano que contiene la base ( h ) Apotema lateral: es la altura de sus caras laterales ( a l ) Apotema de la base: es la apotema de la base ( a b ) Estos tres elementos forman un triángulo rectángulo que nos resultará muy útil en los cálculos de áreas y volúmenes. Podemos clasificar las pirámides de la siguiente manera: Por los polígonos de sus bases pueden ser: Triangulares: su base es un triángulo. Cuadrangulares: su base es un cuadrado. Pentagonales: su base es un pentágono, etc. Por los triángulos de las caras laterales pueden ser: Rectas: Las pirámides rectas son aquellas que tienen por caras laterales triángulos isósceles. Oblicuas: Si alguna cara lateral es un triángulo escaleno, la pirámide es oblicua. Según el polígono de su base, pueden ser: Regulares: Son regulares aquellas pirámides rectas que tienen por base un polígono regular. Irregulares cuando falta alguna condición de regularidad. Pirámide pentagonal recta (regular) Pirámide pentagonal oblicua (irregular)

4 TRONCO DE PIRÁMIDE: El tronco de pirámide es la parte de pirámide comprendida entre la base y la sección producida por un plano paralelo a la base. La altura del tronco es la distancia entre las bases y la apotema lateral, que es la altura de una cara lateral (trapecio). TEOREMA DE EULER.- En cualquier poliedro convexo se verifica que el número de caras (C) más el número de vértices (V) es igual al número de aristas (A) más dos: N º de caras + N º de vértices = N º de aristas + C + V = A + CUERPOS REDONDOS.- Los cuerpos redondos de revolución se obtienen al girar una figura plana alrededor de un eje. Los tres cuerpos de revolución más sencillos son el cilindro, el cono y la esfera. CILINDRO: El cilindro es el cuerpo geométrico que se obtiene al girar un rectángulo alrededor de uno de sus lados. Sus elementos más importantes son: Altura (h): es el segmento que une el centro de las dos bases. Es perpendicular a ambas bases. Radio (r): es el radio de cada uno de los círculos que forman sus bases. Generatriz (g): es el segmento que genera el cilindro. Su medida coincide con la de la altura. CONO: El cono es el cuerpo geométrico que se obtiene al girar un triángulo rectángulo alrededor de uno de sus catetos. Sus elementos más importantes son: Altura (h): es el segmento que une el vértice y el centro de la base. Es perpendicular a la base. Radio (r): es el radio del círculo que forma su base.

5 Generatriz (g): es el segmento que genera el cono. ESFERA: La esfera es el cuerpo geométrico que se obtiene al girar un semicírculo alrededor de su diámetro. Sus elementos más importantes son: Radio (r): es el segmento que une el centro con un punto cualquiera de la superficie que limita la esfera. Diámetro (d): es el segmento que une dos puntos de la superficie esférica pasando por el centro. TEOREMA DE PITÁGORAS EN EL ESPACIO.- DIAGONAL DEL ORTOEDRO Y DEL CUBO: La diagonal de un ortoedro se puede calcular generalizando el teorema de Pitágoras a triángulos rectángulos situados en el espacio. Llamando a, b y c a las tres dimensiones del ortoedro (ancho, largo, alto) y D a la diagonal del ortoedro resulta: Si notamos por d a la diagonal de la base, se tiene: d + = a b [] Por otro lado, en el triángulo rectángulo sombreado tenemos: D + = d c [] Sustituyendo [] en [] obtenemos: D Ortoedro = a + b + c En el caso particular del cubo, las tres dimensiones son iguales, por ello: D = a + a + a = a D Cubo = a

6 RELACIONES MÉTRICAS EN PIRÁMIDES, CONOS Y ESFERAS: El teorema de Pitágoras permite relacionar la altura (h) de la pirámide con la apotema lateral ( a l ) y con la apotema de la base ( a b ): En el ejemplo: l = h a b a + = h = 00 6 = 64 h h = 8 También relacionamos por este teorema los elementos de los conos: altura (h), radio (r) y generatriz (g): g = h + r En el ejemplo: g = + 5 = = 69 g = También relacionamos por este teorema los elementos de los troncos de conos: altura (h), radios (r y g = R r + h R) y generatriz (g): ( ) En el ejemplo: ( 8 ) + 8 = = 00 g = g = 0 Y lo mismo ocurre para la esfera con: su radio (R), el radio de un círculo al seccionarlo con un plano (r) y la distancia (d) del centro de la esfera al centro de dicho círculo: En el ejemplo: R = r + = r = 5 6 = 9 d r r = ÁREAS DE POLIEDROS.- Llamamos desarrollo plano de un poliedro a la figura plana que se obtiene al extenderlo sobre un plano. A partir de él podemos reconstruir el poliedro. El área de un poliedro se obtiene sumando las áreas de todas las caras que lo forman. Para las pirámides y prismas se pueden obtener fórmulas sencillas que permitan calcular el área. ÁREAS DE PRISMAS RECTOS: El desarrollo de un prisma recto es un rectángulo (formado por las caras laterales) y los dos polígonos de las bases. Uno de los lados del rectángulo es el perímetro del polígono de la base ( P B ) y el otro lado es la altura del prisma.

7 El área lateral es igual al perímetro de la base por la altura: A lateral = P h B El área total es igual al área lateral más el área de las dos bases: A Total = A + A lateral base ÁREAS DE PIRÁMIDES RECTAS: El desarrollo de una pirámide recta lo forman varios triángulos isósceles (caras laterales) y el polígono de la base. El área lateral se obtiene sumando el área de todas las caras laterales: = Suma de las áreas de las caras laterales. El área total se obtiene sumando al área lateral el área de la base: A = A + A Total Lateral Base El desarrollo de un tronco de pirámide son varios trapecios y los dos polígonos que forman las bases. El área de una cara lateral es el área de un trapecio y el área lateral la suma de las áreas de todas las caras laterales: A L = Suma de las áreas de las caras laterales El área total es igual al área lateral más la suma de las áreas de la base mayor y de la base menor: A = A + A + A Total Lateral B b ÁREAS DE LOS CUERPOS REDONDOS.- ÁREA DEL CILINDRO: El desarrollo de un cilindro es un rectángulo y dos círculos. El rectángulo tiene por base la longitud de la circunferencia y por altura la generatriz. El área lateral es, por tanto: = πrh El área total es igual al área lateral más la suma de las

8 áreas de los dos círculos: A total = π rh + πr ÁREA DEL CONO: El desarrollo de un cono es un sector circular y un círculo. El arco del sector circular tiene de longitud πr, porque es la longitud de la circunferencia de la base. El área lateral es igual al área del sector circular: longitud = del arco radio π r g = = π rg = π rg El área total es igual al área lateral más el área del círculo de la base: A total = π rg + π r ÁREA DEL TRONCO DE CONO: El desarrollo de un tronco de cono es un trapecio circular y dos círculos. El trapecio circular tiene por bases las longitudes de las circunferencias. El área lateral es: longitud arco mayor + longitud arco menor = g = ( R + r) π R + π r / π = g = g = π g / ( R + r) = π g( R + r) El área total es igual al área lateral más el área de los dos círculos: A total ( R + r) + π R π r = π g + VOLÚMENES.- El volumen de un cuerpo expresa el número de veces que contiene al cubo unidad. El volumen del ortoedro es: V = ABase altura = abh V = abh En el caso particular del cubo, sus tres dimensiones son iguales, con lo que: V cubo a a a = = a V cubo = a El volumen del prisma es: Pr = Área dela base altura VPr isma = ABase h V isma El volumen de un cilindro es como el del prisma: V Cilindro = Área dela base altura V Cilindro = π r h El volumen de una pirámide cualquiera (recta u oblicua) es:

9 V Pirámide = Área dela base altura V Pirámide = A Base h El volumen del cono es como el de la pirámide: V Pirámide = Área dela base altura V Cono = A Base h V Cono = π r h El volumen del tronco de cono siguiendo el procedimiento: Calculamos la altura x del cono pequeño. Calculamos la altura H del cono grande. El volumen del tronco de cono es la diferencia entre el volumen del cono grande y el volumen Ejemplo: del cono pequeño. Al ser los triángulos ABC y ADE semejantes, tenemos: x = x + h r R x 6 x + = 4 x = 9m Calculamos la altura H del cono grande: H = x + h = 9 + = m El volumen del tronco de cono es la diferencia entre el volumen del cono grande y el volumen del cono pequeño: = π π V = 970'97 m VOLUMEN DE LA ESFERA Y ÁREA DE LA SUPERFICIE ESFÉRICA.- El área de la superficie esférica es: A esfera = 4π r El volumen de la esfera es: V esfera 4 = π r

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

Figuras de tres dimensiones

Figuras de tres dimensiones Figuras de tres dimensiones Poliedros: cuerpos geométricos limitados por 4 o más superficies planas que son polígonos. Poliedros regulares: todas las caras de igual forma y tamaño. Solo existen 5. Prismas

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes)

Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes) Cuerpos geométricos Cuerpos redondos Cuerpos de revolución Poliedros (más importantes) Cuerpo geométrico limitado por caras que son polígonos Cuerpo geométrico que se obtiene a partir de una figura plana

Más detalles

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.

Más detalles

Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria

Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Tema 8: Cuerpos geométricos Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Definiciones Cuerpos geométricos Poliedros. Elementos. Clasificaciones: o Poliedros cóncavos y convexos.

Más detalles

TEMA 5. Geometría. Teoría. Matemáticas

TEMA 5. Geometría. Teoría. Matemáticas 1 La Geometría trata sobre las formas y sus propiedades. A su vez, se puede dividir en: Geometría plana: trata de las figuras en el plano, (dos dimensiones) Geometría tridimensional: trata de figuras en

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

TEMA 4. Geometría. Teoría. Matemáticas

TEMA 4. Geometría. Teoría. Matemáticas 1 1.- Rectas y ángulos La geometría se basa en tres conceptos fundamentales que forman parte del espacio geométrico, es decir, el conjunto formado por todos los puntos: El punto La recta El plano Partiendo

Más detalles

Figura plana Área Ejemplo Cuadrado. Área =

Figura plana Área Ejemplo Cuadrado. Área = ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características

Más detalles

Perímetros, áreas y volúmenes de figuras y cuerpos geométricos.

Perímetros, áreas y volúmenes de figuras y cuerpos geométricos. Perímetros, áreas y volúmenes de figuras y cuerpos geométricos. Perímetros y áreas de polígonos Triángulo El triángulo es un polígono con tres lados P = b + c + d ( Perímetro es igual a la suma de las

Más detalles

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples

5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples 5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:

Más detalles

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:. IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional

Más detalles

TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES.

TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES. TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES. CONTENIDOS: 1. PERÍMETROS Y ÁREA DE CUADRILÁTEROS Y TRIÁNGULOS. 1.1. PERÍMETROS Y ÁREAS DE PARALELOGRAMOS. 1.2. PERÍMETRO Y ÁREAS DE TRIÁNGULOS. 1.3. PERÍMETRO Y

Más detalles

Elementos del cilindro

Elementos del cilindro Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

GEOMETRIA DEL ESPACIO. Geometría del espacio, rama de la geometría que se ocupa de las. propiedades y medidas de figuras geométricas en el espacio

GEOMETRIA DEL ESPACIO. Geometría del espacio, rama de la geometría que se ocupa de las. propiedades y medidas de figuras geométricas en el espacio GEOMETRIA DEL ESPACIO Geometría del espacio, rama de la geometría que se ocupa de las propiedades y medidas de figuras geométricas en el espacio tridimensional. Entre estas figuras, también llamadas sólidos,

Más detalles

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.

10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

POLIEDROS. POLIEDROS Prof. Annabella Zapattini. Definición: Llamamos poliedro a la región del espacio limitada por polígonos planos.

POLIEDROS. POLIEDROS Prof. Annabella Zapattini. Definición: Llamamos poliedro a la región del espacio limitada por polígonos planos. POLIEDROS Definición: Llamamos poliedro a la región del espacio limitada por polígonos planos. Definiciones: Llamamos caras de un poliedro a los polígonos que lo definen. Llamamos aristas a los segmentos

Más detalles

Maquetería 02: Poliedros, cuerpos redondos y su construcción

Maquetería 02: Poliedros, cuerpos redondos y su construcción Maquetería 02: Poliedros, cuerpos redondos y su construcción Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

Maquetería 02: Poliedros, cuerpos redondos y su construcción

Maquetería 02: Poliedros, cuerpos redondos y su construcción Maquetería 02: Poliedros, cuerpos redondos y su construcción Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

PERÍMETROS ÁREAS - VOLÚMENES

PERÍMETROS ÁREAS - VOLÚMENES ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado. Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las

Más detalles

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones.

1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones. ÍNDICE DEL TEMA 1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones. 2. FIGURAS PLANAS : 2.1. POLÍGONOS Triángulos Cuadriláteros Polígonos regulares 2.2. CIRCUNFERENCIA Y CÍRCULO: Elementos.

Más detalles

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha:

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha: CLASIICAR POLIEDROS OBJETIVO 1 Nombre: Curso: eca: POLIEDROS Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los polígonos que limitan al poliedro se llaman caras. Los

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

Cuerpos Geométricos. Volúmenes de Cuerpos Geométricos

Cuerpos Geométricos. Volúmenes de Cuerpos Geométricos Cuerpos Geométricos. Volúmenes de Cuerpos Geométricos Un cuerpo geométrico es un elemento que existe en la realidad o que somos capaces de concebir, llamado sólido, el cual ocupa un volumen en el espacio,

Más detalles

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150 uno es agudo y el otro es obtuso. Á = (48. 5 ) / 2 = 120 D 2 = 20 2 + 10 2 + 6 2 = 536 ; D = 23 15 V = V S + V c = 2 / 3. π 125 + 1 / 3. π 25. 3 = 325/3. π Área = lado x lado = l 2 Los paralelepípedos

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización

Más detalles

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares

Más detalles

Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b)

Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b) Cuerpos geométricos EJERCICIOS 001 Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b) a) Pirámide cuadrangular: 5 caras y 8 aristas. b) Prisma triangular: 5

Más detalles

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA:

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA: OJETIVO 1 CONOCER LOS POLIEDROS Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro

Más detalles

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS: TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

PRISMAS Y CILINDROS. Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros: área y volumen

PRISMAS Y CILINDROS. Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros: área y volumen PRISMAS Y CILINDROS OBJETIVO DE LA CLASE: ANALIZAR PRISMAS Y CILINDROS EN CUANTO A SU ÁREA Y VOLUMEN Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros:

Más detalles

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO RESUMEN ÁSICO DEL LOQUE DE GEOMETRÍA Matemáticas 3º de ESO 1-. Conceptos fundamentales. Punto Recta Plano Semirrecta: porción de recta limitada en un extremo por un punto Semiplano: es cada una de las

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de

Más detalles

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2 PÁGINA 98 Pág. 1 1 Haz una tabla con el número de caras, vértices y aristas de los cinco poliedros regulares. a) Comprueba que los cinco cumplen la fórmula de Euler. [Recuerda: c + v = a + ]. b) Comprueba

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal a la gura formada por la unión de segmentos de

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

POLIEDROS. ÁREAS Y VOLÚMENES.

POLIEDROS. ÁREAS Y VOLÚMENES. 7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.

Más detalles

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

A mi muy querida profesora que con ansias debe estar esperando mi trabajo. I. Introducción pag. 4

A mi muy querida profesora que con ansias debe estar esperando mi trabajo. I. Introducción pag. 4 MONOGRAFÍA NOMBRE : COLEGIO : GRADO : IVº B TEMA : Geometría del Espacio PROFESORA : FECHA : 30 de Noviembre DEDICATORIA A mi muy querida profesora que con ansias debe estar esperando mi trabajo índice

Más detalles

El polígono es una porción del plano limitado por una línea poligonal cerrada.

El polígono es una porción del plano limitado por una línea poligonal cerrada. UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los

Más detalles

Poliedros y cuerpos redondos para imprimir

Poliedros y cuerpos redondos para imprimir Poliedros y cuerpos redondos para imprimir Nombre Curso: Fecha: Escribe en la parte derecha lo que falta. 1. Los cuerpos redondos. La geometría del espacio estudia los cuerpos que tienen tres dimensiones:

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

VOLÚMENES DE POLIEDROS PRISMA:

VOLÚMENES DE POLIEDROS PRISMA: VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen

Más detalles

Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras.

Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras. LOS POLIEDROS: El cubo, la pirámide, la esfera, el cilindro... son figuras sólidas. Observando tales figuras, vemos que algunos sólidos, como el cubo y la pirámide, tienen su superficie exterior formada

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

Módulo Tres. Bloque 9 Tema 7

Módulo Tres. Bloque 9 Tema 7 Ámbito Científico y Tecnológico Módulo Tres. Bloque 9 Tema 7 Las formas y las medidas que nos rodean Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 1 de 30 ÍNDICE Presentación

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

POLIEDROS. Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

POLIEDROS. Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

GEOMETRÍA. Convexos Llano (Plano) Cóncavo Giro. Consecutivos Adyacentes Diedro Complementario Suplementario

GEOMETRÍA. Convexos Llano (Plano) Cóncavo Giro. Consecutivos Adyacentes Diedro Complementario Suplementario GEOMETRÍA Angulo.- Es la abertura comprendida entre dos rectas que se encuentran en un punto. Estas rectas se llaman lados del ángulo, y el punto de encuentro se denomina vértice. Un ángulo suele designarse

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

unidad 10 Cuerpos geométricos

unidad 10 Cuerpos geométricos unidad 10 Cuerpos geométricos Poliedros. Características Página 1 Poliedro es un cuerpo cerrado limitado por caras planas que son polígonos. Aristas son los lados de las caras. Cada dos caras contiguas

Más detalles

TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS

TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS MÓDULO - Ámbito Científico-Tecnológico TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS. REPASO A LAS FIGURAS PLANAS ELEMENTALES Actividad (p. 40). Calcula el área de un triángulo equilátero de lado m.

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

GEOMETRÍA DEL ESPACIO: PRISMA

GEOMETRÍA DEL ESPACIO: PRISMA FICHA DE TAAJO Nº Nombre Nº orden imestre IV 4ºgrado - sección A C D Ciclo IV Fecha: - - 1 Área Matemática Tema GEOMETÍA DEL ESPACIO: PISMA TEMA: PISMA Es el sólido que se encuentra limitado por dos polígonos

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo.

Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo. Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo. A: punto A. Una línea es una secuencia infinita de puntos. Las líneas

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

POLIEDROS, PRISMAS Y PIRÁMIDES

POLIEDROS, PRISMAS Y PIRÁMIDES POLIEDROS, PRISMAS Y PIRÁMIDES 1. Completa la siguiente tabla. 2. Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones. a) La suma de las caras y los vértices del cubo es 12. b) El menor

Más detalles

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186 PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría

Más detalles

2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado?

2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado? FIGURAS PLANAS. ÁREAS 1º. De las siguientes ternas de números, cuáles son pitagóricas? (Es decir cumplen el teorema de Pitágoras) a) 3, 4, 5 b) 4, 5, 6 c) 5, 12, 13 d) 6, 8, 14 e) 15, 20, 25 2º. La diagonal

Más detalles