حسين الجسمي - يا مُقلّب القلوب Q 320kbps | The Hangover | Gungrave

MATEMÁTICAS I UNIDAD 1: NÚMEROS REALES. Los números enteros, racionales e irracionales.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS I UNIDAD 1: NÚMEROS REALES. Los números enteros, racionales e irracionales."

Transcripción

1 MATEMÁTICAS I UNIDAD 1: NÚMEROS REALES Distintos tipos de números Los números enteros, racionales e irracionales. El papel de los números irracionales en el proceso de ampliación de la recta numérica. Recta real Correspondencia de cada número real con un punto de la recta, y viceversa. Representación sobre la recta de números racionales, de algunos radicales y, aproximadamente, de cualquier número dado por su expresión decimal. Intervalos y semirrectas. Representación. Radicales Forma exponencial de un radical. Propiedades de los radicales. Logaritmos Definición y propiedades. Utilización de las propiedades de los logaritmos para realizar cálculos y para simplificar expresiones. Notación científica Manejo diestro de la notación científica. Calculadora Utilización de la calculadora para diversos tipos de tareas aritméticas, aunando la destreza de su manejo con la

2 comprensión de las propiedades que se utilizan Dados varios números, los clasifica en los distintos campos numéricos Interpreta raíces y las relaciona con su notación exponencial Conoce la definición de logaritmo y la interpreta en casos concretos Expresa con un intervalo un conjunto numérico en el que interviene una desigualdad con valor absoluto Opera correctamente con radicales Opera con números muy grandes o muy pequeños valiéndose de la notación científica y acotando el error cometido Aplica las propiedades de los logaritmos en contextos variados Utiliza la calculadora para obtener potencias, raíces, resultados de operaciones con números en notación científica y logaritmos. UNIDAD 2: SUCESIONES. Sucesión Término general. Sucesión recurrente. Algunas sucesiones interesantes. Progresión aritmética Diferencia de una progresión aritmética. Obtención del término general de una progresión aritmética dada mediante algunos de sus elementos. Cálculo de la suma de n términos.

3 Progresión geométrica Razón. Obtención del término general de una progresión geométrica dada mediante algunos de sus elementos. Cálculo de la suma de n términos. Cálculo de la suma de los infinitos términos en los casos en los que r < 1. Sucesiones de potencias Cálculo de la suma de los cuadrados o de los cubos de n números naturales consecutivos. Límite de una sucesión Sucesiones que tienden l +, o que oscilan. Obtención del límite de una sucesión mediante el estudio de su comportamiento para términos avanzados: - Con ayuda de la calculadora. - Reflexionando sobre las peculiaridades de la expresión aritmética de su término general. Algunos límites interesantes: - Suma de términos de una progresión geométrica. - (1 + 1/n)n - Cociente de dos términos consecutivos de la sucesión de Fibonacci Obtiene términos generales de progresiones Obtiene términos generales de otros tipos de sucesiones Da el criterio de formación de una sucesión recurrente.

4 2.1. Calcula el valor de la suma de términos de progresiones Averigua el límite de una sucesión o justifica que carece de él. UNIDAD 3: ÁLGEBRA Factorización de polinomios Factorización de un polinomio a partir de la identificación de sus raíces enteras. Fracciones algebraicas Operaciones con fracciones algebraicas. Simplificación. Manejo diestro de las técnicas algebraicas básicas. Ecuaciones Ecuaciones de segundo grado. Ecuaciones bicuadradas. Ecuaciones con radicales. Ecuaciones con denominadores literales. Ecuaciones exponenciales. Ecuaciones logarítmicas. Sistema de ecuaciones Resolución de sistemas de ecuaciones de cualquier tipo que puedan desembocar en ecuaciones de las nombradas. Método de Gauss para resolver sistemas lineales 3 3. Inecuaciones Resolución de inecuaciones y de sistemas de inecuaciones de primer grado. Resolución de problemas Traducción al lenguaje algebraico de problemas dados

5 mediante enunciado Simplifica fracciones algebraicas Opera con fracciones algebraicas Resuelve ecuaciones de segundo grado y bicuadradas Resuelve ecuaciones con radicales y con la incógnita en el denominador Se vale de la factorización como recurso para resolver ecuaciones Resuelve ecuaciones exponenciales y logarítmicas Plantea y resuelve problemas mediante ecuaciones Resuelve sistemas de ecuaciones de primero y segundo grados y los interpreta gráficamente Resuelve sistemas de ecuaciones con radicales y fracciones algebraicas (sencillos) Resuelve sistema de ecuaciones con expresiones exponenciales y logarítmicas 3.4. Resuelve sistema de tres ecuaciones con tres incógnitas (con solución única) mediante el método de Gauss 3.5. Plantea y resuelve problemas mediante sistemas de ecuaciones 4.1. Resuelve e interpreta gráficamente inecuaciones y sistemas de inecuaciones con una incógnita (sencillos). UNIDAD 4: RESOLUCIÓN DE TRIÁNGULOS Razones trigonométricas de un ángulo agudo Obtención, con la calculadora, de las razones trigonométricas de un ángulo y del ángulo que corresponde a una razón trigonométrica.

6 Relaciones entre las razones trigonométricas. Dada una razón trigonométrica, calcular las otras. Razones trigonométricas de ángulos cualesquiera Cálculo gráfico de las razones trigonométricas de ángulos cualesquiera y su relación con una del primer cuadrante. Circunferencia goniométrica. Representación de un ángulo y visualización de sus razones trigonométricas. Representación de ángulos conociendo una razón trigonométrica. Resolución de triángulos Resolución de triángulos rectángulos. Aplicación de la estrategia de la altura para resolver triángulos no rectángulos. Teorema de los senos y teorema del coseno Resolución de triángulos cualesquiera mediante los teoremas de los senos y del coseno Resuelve triángulos rectángulos Se vale de dos triángulos rectángulos para resolver un triángulo oblicuángulo (estrategia de la altura) Obtiene las razones trigonométricas de un ángulo cualquiera relacionándolo con uno del primer cuadrante Resuelve un triángulo oblicuángulo definido mediante un dibujo A partir de un enunciado, dibuja el triángulo que describe la situación y lo resuelve.

7 UNIDAD 5: FUNCIONES Y FÓRMULAS TIGONOMÉTRICAS El radián Relación entre grados y radianes. Utilización de la calculadora en modo RAD. Paso de grados a radianes, y viceversa. Las funciones trigonométricas Identificación de las funciones trigonométricas seno, coseno y tangente. Fórmulas trigonométricas Razones trigonométricas del ángulo suma, de la diferencia de dos ángulos, del ángulo doble y del ángulo mitad. Sumas y diferencias de senos y cósenos. Simplificación de expresiones trigonométricas mediante transformaciones en producto. Ecuaciones trigonométricas Resolución de ecuaciones trigonométricas Transforma en radianes un ángulo dado en grados, y viceversa Reconoce las funciones trigonométricas dadas mediante sus gráficas y representa cualquiera de ellas sobre unos ejes coordenados, en cuyo eje de abscisas se han señalado las medidas, en radianes, de los ángulos más relevantes Simplifica expresiones con fórmulas trigonométricas o demuestra identidades Resuelve ecuaciones trigonométricas.

8 UNIDAD 6: NÚMEROS COMPLEJOS. Números complejos Unidad imaginaria. Números complejos en forma binómica. Representación gráfica de números complejos. Operaciones con números complejos en forma binómica. Propiedades de las operaciones con números complejos. Números complejos en forma polar Módulo y argumento. Paso de forma binómica a forma polar y de forma polar a forma binómica. Producto y cociente de complejos en forma polar. Potencia de un complejo. Fórmula de Moivre. Aplicación de la fórmula de Moivre en trigonometría. Radicación de números complejos Obtención de las raíces n-ésimas de un número complejo. Representación gráfica. Ecuaciones en el campo de los complejos Resolución de ecuaciones en. Aplicación de los números complejos a la resolución de problemas geométricos Realiza operaciones combinadas de números complejos puestos en forma binómica y representa gráficamente la solución.

9 1.2. Pasa un número complejo de forma binómica a polar, o viceversa, lo representa y obtiene su opuesto y su conjugado Resuelve problemas en los que deba realizar operaciones aritméticas con complejos y para lo cual deba dilucidar si se expresan en forma binómica o polar. Se vale de la representación gráfica en alguno de los pasos Calcula raíces de números complejos y las interpreta gráficamente Resuelve ecuaciones en el campo de los números complejos. UNIDAD 7: VECTORES Vectores. Operaciones Definición de vector: módulo, dirección y sentido. Representación. Producto de un vector por un número. Suma y resta de vectores. Obtención gráfica del producto de un número por un vector, del vector suma y del vector diferencia. Combinación lineal de vectores Expresión de un vector como combinación lineal de otros. Concepto de base Coordenadas de un vector respecto de una base. Representación de un vector dado por sus coordenadas en una cierta base. Reconocimiento de las coordenadas de un vector representado en una cierta base. Operaciones con vectores dados gráficamente o por sus

10 coordenadas. Producto escalar de dos vectores Propiedades. Expresión analítica del producto escalar en una base ortonormal. Aplicaciones: módulo de un vector, ángulo de dos vectores, ortogonalidad. Cálculo de la proyección de un vector sobre otro. Obtención de vectores unitarios con la dirección de un vector dado. Cálculo del ángulo que forman dos vectores. Obtención de vectores ortogonales a un vector dado. Obtención de un vector conociendo su módulo y el ángulo que forma con otro Efectúa combinaciones lineales de vectores gráficamente y mediante sus coordenadas Expresa un vector como combinación lineal de otros dos, gráficamente y mediante sus coordenadas Conoce y aplica el significado del producto escalar de dos vectores, sus propiedades y su expresión analítica Calcula módulos y ángulos de vectores y lo aplica en situaciones diversas Aplica el producto escalar para identificar vectores perpendiculares.

11 UNIDAD 8: GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Sistema de referencia en el plano Coordenadas de un punto. Aplicaciones de los vectores a problemas geométricos Coordenadas de un vector que une dos puntos, punto medio de un segmento Ecuaciones de la recta Vectorial, paramétricas y general. Paso de un tipo de ecuación a otro. Aplicaciones de los vectores a problemas métricos Vector normal. Obtención del ángulo de dos rectas a partir de sus pendientes. Obtención de la distancia entre dos puntos o entre un punto y una recta. Reconocimiento de la perpendicularidad. Posiciones relativas de rectas Obtención del punto de corte de dos rectas. Ecuación explícita de la recta. Pendiente. Forma punto-pendiente de una recta. Obtención de la pendiente de una recta. Recta que pasa por dos puntos. Relación entre las pendientes de rectas paralelas o perpendiculares. Obtención de una recta paralela (o perpendicular) a otra que pasa por un punto. Haz de rectas.

12 1.1. Halla el punto medio de un segmento y el simétrico de un punto respecto de otro Utiliza los vectores y sus relaciones para obtener un punto a partir de otros (baricentro de un triángulo, cuarto vértice de un paralelogramo, punto que divide a un segmento en una proporción dada...) Obtiene las ecuaciones paramétricas de una recta conociendo los datos necesarios Estudia la posición relativa de dos rectas dadas en paramétricas y, en su caso, halla su punto de corte Dadas dos rectas en paramétricas, reconoce si son perpendiculares o calcula el ángulo que forman Halla la ecuación implícita de una recta a partir de sus ecuaciones paramétricas o de algunos de sus elementos (dos puntos, punto y pendiente...) Establece relaciones de paralelismo o de perpendicularidad entre rectas dadas en implícitas, mediante la obtención de sus pendientes Calcula la distancia entre puntos o de un punto a una recta Resuelve problemas geométricos utilizando herramientas analíticas. UNIDAD 9: LUGARES GEOMÉTRICOS. CÓNICAS Las cónicas como secciones de una superficie cónica Identificación del tipo de cónica que se obtiene según el ángulo α de la superficie cónica y el ángulo β que el plano forma con su eje.

13 Ecuación de la circunferencia Características de una ecuación cuadrática en x e y para que sea una circunferencia. Obtención de la ecuación de una circunferencia a partir de su centro y su radio. Obtención del centro y del radio de una circunferencia a partir de su ecuación. Estudio de la posición relativa de una recta y una circunferencia. Potencia de un punto a una circunferencia. Estudio analítico de las cónicas como lugares geométricos Elementos característicos (ejes, focos, excentricidad). Ecuaciones reducidas. Obtención de la ecuación reducida de una cónica Identificación del tipo de cónica y de sus elementos a partir de su ecuación reducida. Resolución de problemas de lugares geométricos, identificando la figura resultante Escribe la ecuación de una circunferencia determinada por algunos de sus elementos u obtiene los elementos (centro y radio) de una circunferencia dada por su ecuación Halla la posición relativa de una recta y una circunferencia Representa una cónica a partir de su ecuación reducida (ejes paralelos a los ejes coordenados) y obtiene nuevos elementos de ella

14 2.2. Pone la ecuación de una cónica dada mediante su representación gráfica y obtiene algunos de sus elementos característicos 3.1. Obtiene la expresión analítica de un lugar geométrico plano definido por alguna propiedad, e identifica la figura de que se trata (reconociendo antes de operar la figura que se va a obtener) Obtiene la expresión analítica de un lugar geométrico plano definido por alguna propiedad, e identifica la figura de que se trata (no sabiendo de antemano la figura que se va a obtener). UNIDAD 10: FUNCIONES ELEMENTALES Función Dominio de definición de una función. Obtención del dominio de definición de una función dada por su expresión analítica. Representación de funciones definidas a trozos. Funciones cuadráticas. Características. Representación de funciones cuadráticas, y obtención de su expresión analítica. Funciones de proporcionalidad inversa. Características. Representación de funciones de proporcionalidad inversa, y obtención de su expresión analítica. Funciones radicales. Características. Representación de funciones radicales, y obtención de su expresión analítica. Funciones exponenciales. Características. Representación de funciones exponenciales, y reconocimiento como exponencial de alguna función dada por la gráfica.

15 Funciones logarítmicas. Características. Representación de funciones logarítmicas, y reconocimiento como logarítmica de alguna función dada por su gráfica. Funciones arco. Características. Relación entre las funciones arco y las trigonométricas. Composición de funciones. Obtención de la función compuesta de otras dos dadas. Descomposición de una función en sus componentes. Función inversa o recíproca de otra. Trazado de la gráfica de una función conocida la de su inversa. Obtención de la expresión analítica de ƒ 1 (x), conocida ƒ(x). Transformaciones de funciones Conociendo la representación gráfica de y = ƒ (x), obtención de las de y = ƒ(x) + k, y = kƒ(x), y = ƒ(x + a), y = ƒ( x), y = ƒ(x) Obtiene el dominio de definición de una función dada por su expresión analítica Reconoce y expresa con corrección el dominio de una función dada gráficamente Determina el dominio de una función teniendo en cuenta el contexto real del enunciado Asocia la gráfica de una función lineal o cuadrática a su expresión analítica Asocia la gráfica de una función radical o de proporcionalidad inversa a su expresión analítica Asocia la gráfica de una función exponencial o logarítmica a su expresión analítica.

16 2.4. Halla valores de una función arco relacionándola con la función trigonométrica correspondiente Obtiene la expresión de una función lineal a partir de su gráfica o de algunos elementos A partir de una función cuadrática dada, reconoce su forma y posición y la representa Representa una función exponencial dada por su expresión analítica Representa funciones definidas a trozos (solo lineales y cuadráticas) Obtiene la expresión analítica de una función dada por un enunciado (lineales, cuadráticas y exponenciales) Representa y = ƒ(x) ± k o y = ƒ(x ± a) o y = ƒ(x) a partir de la gráfica de y = ƒ(x) Representa y = ƒ(x) a partir de la gráfica de y = ƒ(x) Obtiene la expresión de y = ax + b identificando las ecuaciones de las rectas que la forman Compone dos o más funciones Reconoce una función como compuesta de otras dos, en casos sencillos Dada la gráfica de una función, representa la de su inversa y obtiene valores de una a partir de los de la otra Obtiene la expresión analítica de la inversa de una función en casos sencillos. UNIDAD 11: LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Continuidad. Discontinuidades Dominio de definición de una función.

17 Reconocimiento sobre la gráfica de la causa de la discontinuidad de una función en un punto. Decisión sobre la continuidad o discontinuidad de una función. Límite de una función en un punto Representación gráfica de las distintas posibilidades de límites en un punto. Cálculo de límites en un punto. De funciones continuas en el punto. De funciones definidas a trozos. De cociente de polinomios. Límite de una función en + o en Representación gráfica de las distintas posibilidades de límites cuando x + y cuando x. Cálculo de límites. De funciones polinómicas. De funciones inversas de polinómicas. De funciones racionales. Ramas infinitas asíntotas Obtención de las ramas infinitas de una función polinómica cuando x ±. Obtención de las ramas infinitas de una función racional cuando x c, x c+, x + y x. 1.1.Dada la gráfica de una función reconoce el valor de los límites cuando x +, x, x a, x a +, x a Interpreta gráficamente expresiones del tipo o un número) así como los límites laterales. lim f (x) = β (α y β son +, x

18 2.1. Calcula el límite en un punto de una función continua Calcula el límite en un punto de una función racional en la que se anula el denominador y no el numerador y distingue el comportamiento por la izquierda y por la derecha Calcula el límite en un punto de una función racional en la que se anulan numerador y denominador Calcula los límites cuando x + o x de funciones polinómicas Calcula los límites cuando x + o x de funciones racionales Dada la gráfica de una función reconoce si en un cierto punto es continua o discontinua y en este último caso identifica la causa de la discontinuidad Estudia la continuidad de una función dada a trozos Halla las asíntotas verticales de una función racional y representa la posición de la curva respecto a ellas Estudia y representa las ramas infinitas de una función polinómica Estudia y representa el comportamiento de una función racional cuando x + y x. (Resultado: ramas parabólicas) Estudia y representa el comportamiento de una función racional cuando x + y x. (Resultado: asíntota horizontal) Estudia y representa el comportamiento de una función racional cuando x + y x. (Resultado: asíntota oblicua). UNIDAD 12: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tasa de variación media Cálculo de la T.V.M. de una función para distintos intervalos. Cálculo de la T.V.M. de una función para intervalos muy

19 pequeños y asimilación del resultado a la variación en ese punto. Derivada de una función en un punto Obtención de la variación en un punto mediante el cálculo de la T.V.M. de la función para un intervalo variable h y obtención del límite de la expresión correspondiente cuando h 0. Función derivada de otras. Reglas de derivación Aplicación de las reglas de derivación para hallar la derivada de funciones. Aplicaciones de las derivadas Halla el valor de una función en un punto concreto. Obtención de la recta tangente a una curva en un punto. Cálculo de los puntos de tangente horizontal de una función. Representación de funciones Representación de funciones polinómicas de grado superior a dos. Representación de funciones racionales Halla la tasa de variación media de una función en un intervalo y la interpreta Calcula la derivada de una función en un punto a partir de la definición Aplicando la definición de derivada halla la función derivada de otra Halla la derivada de una función sencilla Halla la derivada de una función en la que intervienen potencias no enteras productos y cocientes Halla la derivada de una función compuesta Halla la ecuación de la recta tangente a una curva.

20 3.2. Localiza los puntos singulares de una función polinómica o racional y los representa Determina los tramos donde una función crece o decrece Representa una función de la que se conocen los datos más relevantes (ramas infinitas y puntos singulares) Describe con corrección todos los datos relevantes de una función dada gráficamente Representa una función polinómica de grado superior a dos Representa una función racional con denominador de primer grado y una rama asintótica Representa una función racional con denominador de primer grado y una rama parabólica Representa una función racional con denominador de segundo grado y una asíntota horizontal Representa una función racional con denominador de segundo grado y una asíntota oblicua Representa una función racional con denominador de segundo grado y una rama parabólica. UNIDAD 13: DISTRIBUCIONES BIDIMENSIONALES Dependencia estadística y dependencia funcional Estudio de ejemplos. Distribuciones bidimensionales Representación de una distribución bidimensional mediante una nube de puntos. Visualización del grado de relación que hay entre las dos variables.

21 Correlación. Recta de regresión Significado de las dos rectas de regresión. Cálculo del coeficiente de correlación y obtención de la recta de regresión de una distribución bidimensional. Utilización de la calculadora en modo LR para el tratamiento de distribuciones bidimensionales. Utilización de las distribuciones bidimensionales para el estudio e interpretación de problemas sociológicos científicos o de la vida cotidiana. Tablas de doble entrada Interpretación. Representación gráfica. Tratamiento con la calculadora Representa mediante una nube de puntos una distribución bidimensional y evalúa el grado de correlación que hay entre las variables Conoce calcula e interpreta la covarianza y el coeficiente de correlación de una distribución bidimensional Obtiene la recta de regresión de Y sobre X y se vale de ella para si procede hacer estimaciones Conoce la existencia de dos rectas de regresión las obtiene y representa y relaciona el grado de proximidad de ambas con el valor de la correlación.

22 UNIDAD 14: CÁLCULO DE PROBABILIDADES Sucesos Operaciones y propiedades. Reconocimiento y obtención de sucesos complementarios incompatibles unión de sucesos intersección de sucesos... Propiedades de las operaciones con sucesos. Leyes de De Morgan. Ley de los grandes números Frecuencia absoluta y frecuencia relativa de un suceso. Frecuencia y probabilidad. Ley de los grandes números. Propiedades de la probabilidad. Justificación de las propiedades de la probabilidad. Ley de Laplace Aplicación de la ley de Laplace para el cálculo de probabilidades sencillas. Reconocimiento de experiencias en las que no se puede aplicar la ley de Laplace. Probabilidad condicionada Dependencia e independencia de dos sucesos. Cálculo de probabilidades condicionadas. Fórmula de probabilidad total Cálculo de probabilidades totales. Fórmula de Bayes Cálculo de probabilidades a posteriori. Tablas de contingencias Posibilidad de visualizar gráficamente procesos y relaciones

23 probabilísticos: tablas de contingencia. Manejo e interpretación de las tablas de contingencia para plantear y resolver algunos tipos de problemas de probabilidad. Diagrama en árbol Posibilidad de visualizar gráficamente procesos y relaciones probabilísticos. Utilización del diagrama en árbol para describir el proceso de resolución de problemas con experiencias compuestas. Cálculo de probabilidades totales y probabilidades a posteriori Expresa mediante operaciones con sucesos un enunciado Aplica las leyes de la probabilidad para obtener la probabilidad de un suceso a partir de las probabilidades de otros Aplica los conceptos de probabilidad condicionada e independencia de sucesos para hallar relaciones teóricas entre ellos Calcula probabilidades planteadas mediante enunciados que pueden dar lugar a una tabla de contingencia Calcula probabilidades totales o a posteriori utilizando un diagrama en árbol o las fórmulas correspondientes. UNIDAD 15: DISTRIBUCIONES DE PROBABILIDAD Distribuciones estadísticas Tipos de variable. Representación gráfica y cálculo de parámetros. Interpretación de tablas y gráficas estadísticas.

24 Obtención de la media y de la desviación típica de una distribución estadística. Distribución de probabilidad de variable discreta Parámetros. Cálculo de los parámetros µ y σ en distribuciones de probabilidad de variable discreta dadas mediante una tabla o por un enunciado. Distribución binomial Reconocimiento de distribuciones binomiales cálculo de probabilidades y obtención de sus parámetros. Distribución de probabilidad de variable continua Comprensión de sus peculiaridades. Función de densidad. Reconocimiento de distribuciones de variable continúa. Cálculo de probabilidades a partir de la función de densidad. Distribución normal Cálculo de probabilidades utilizando las tablas de la normal N (0, 1). Aproximación de la distribución binomial a la normal. Identificación de distribuciones binomiales que se puedan considerar razonablemente próximas a distribuciones normales y cálculo de probabilidades en ellas por paso a la normal correspondiente Construye la tabla de una distribución de probabilidad de variable discreta y calcula sus parámetros Reconoce si una cierta experiencia aleatoria puede ser descrita o no mediante una distribución binomial identificando en ella n y p.

25 2.2. Calcula probabilidades en una distribución binomial y halla sus parámetros Interpreta la función de probabilidad (o función de densidad) de una distribución de variable continua y calcula o estima probabilidades a partir de ella Maneja con destreza la tabla de la N (0, 1) y la utiliza para calcular probabilidades Conoce la relación que existe entre las distintas curvas normales y utiliza la tipificación de la variable para calcular probabilidades en una distribución N (µ, σ) Obtiene un intervalo centrado en la media al que corresponda una probabilidad previamente determinada Dada una distribución binomial reconoce la posibilidad de aproximarla por una normal obtiene sus parámetros y calcula probabilidades a partir de ella. TEMPORALIZACION 1º Trimestre: Temas 1, 2, 3, 4, 5. 2º Trimestre: Temas 6, 7, 8, 9, 10. 3º Trimestre: Temas 11, 12, 13, 14, 15.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición

Más detalles

CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I

CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I UNIDAD 1 NÚMEROS REALES 1.1. Dados varios números, los clasifica en los distintos campos numéricos y los representa en la recta real. 1.2. Domina

Más detalles

MATEMÁTICAS I aplicadas a las Ciencias Sociales

MATEMÁTICAS I aplicadas a las Ciencias Sociales MATEMÁTICAS I aplicadas a las Ciencias Sociales UNIDAD 1: NÚMEROS REALES Distintos tipos de números Los números enteros, racionales e irracionales. El papel de los números irracionales en el proceso de

Más detalles

MATEMÁTICAS I UNIDAD 1

MATEMÁTICAS I UNIDAD 1 MATEMÁTICAS I UNIDAD 1 1. Conocer los conceptos básicos del campo numérico (recta real, potencias, raíces, logaritmos...). 2. Dominar las técnicas básicas del cálculo en el campo de los números reales.

Más detalles

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini. Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real

Más detalles

DEPARTAMENTO DE MATEMÁTICAS CURSO

DEPARTAMENTO DE MATEMÁTICAS CURSO 1º ESO. Contenidos mínimos. 1. La recta numérica. Representación de números naturales en la recta 2. Suma y resta. Propiedades y relaciones 3. Multiplicación. Propiedades 4. División exacta. Relaciones

Más detalles

Unidad 1: Números reales/ Unidad 2: Sucesiones

Unidad 1: Números reales/ Unidad 2: Sucesiones CRITERIOS DE EVALUACIÓN Y EXIGIBLES. Unidad 1: Números reales/ Unidad 2: Sucesiones Distintos tipos de números - Los números enteros, racionales e irracionales. - El papel de los números irracionales en

Más detalles

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los

Más detalles

Resuelve ecuaciones con radicales y con la incógnita en el denominador. Se vale de la factorización como recurso para resolver ecuaciones.

Resuelve ecuaciones con radicales y con la incógnita en el denominador. Se vale de la factorización como recurso para resolver ecuaciones. OBJETIVOS, Y PARA EL PROGRAMA DE REFUERZO INDIVIDUALIZADO DE APRENDIZAJES NO ADQUIRIDOS (SEPTIEMBRE 2017) Asignatura: Matemáticas aplicadas a las Ciencias Sociales I Curso: 1º Bachillerato Ciencias Sociales

Más detalles

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( )

Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( ) 1 Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º (2015-2016) Tema 1: NÚMEROS REALES Conjuntos numéricos. Números naturales. Números enteros. Números racionales. Números

Más detalles

I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH.

I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH. CURSO 2009-2010 CURSO: 1º BACH. CCSS Números reales (Intervalos y entornos, valor absoluto, logaritmo). ÁREA: MATEMATICAS AP. CCSS I Polinomios y fracciones algebraicas (operaciones básicas, divisibilidad,

Más detalles

MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto de los bloques. Resolución de

Más detalles

MATEMÁTICAS. PRIMERO DE E.S.O.

MATEMÁTICAS. PRIMERO DE E.S.O. MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.

Más detalles

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.

Más detalles

OBJETIVOS DE MATEMÁTICAS B 4º DE ESO

OBJETIVOS DE MATEMÁTICAS B 4º DE ESO OBJETIVOS DE MATEMÁTICAS B 4º DE ESO UNIDAD 1 1.1. Domina la expresión decimal de un número o una cantidad y calcula o acota los errores absoluto y relativo en una aproximación. 1.2. Realiza operaciones

Más detalles

UD 1: NÚMEROS REALES Y COMPLEJOS

UD 1: NÚMEROS REALES Y COMPLEJOS UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK

CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK CONTENIDOS MÍNIMOS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 MATEMÁTICAS 1º BACHILLERATO HHCCSS IES DOMINGO PÉREZ MINIK BLOQUE 1. ESTADÍSTICA 1. ESTADÍSTICA UNIDIMENSIONAL Variable estadística

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

DEPARTAMENTO DE MATEMÁTICAS PRUEBAS EXTRAORDINARIAS. CARACTERÍSTICAS DE LAS PRUEBAS Y CONTENIDOS MÍNIMOS

DEPARTAMENTO DE MATEMÁTICAS PRUEBAS EXTRAORDINARIAS. CARACTERÍSTICAS DE LAS PRUEBAS Y CONTENIDOS MÍNIMOS DEPARTAMENTO DE MATEMÁTICAS PRUEBAS EXTRAORDINARIAS. CARACTERÍSTICAS DE LAS PRUEBAS Y CONTENIDOS MÍNIMOS En las pruebas extraordinarias se propondrán actividades y problemas sobre los contenidos mínimos.

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.

Más detalles

Todos los ejercicios de esta prueba tendrán el mismo valor, salvo que se especifique en el propio examen lo contrario.

Todos los ejercicios de esta prueba tendrán el mismo valor, salvo que se especifique en el propio examen lo contrario. DEPARTAMENTO DE MATEMÁTICAS CURSO 2016/17 Convocatoria extraordinaria de septiembre: En la evaluación extraordinaria el instrumento de evaluación será una prueba escrita referida tanto a los contenidos

Más detalles

6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O.

6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O. 6. PROGRAMACIÓN DEL CURSO 4º A DE E. S. O. 6.1 OBJETIVOS GENERALES DEL CURSO Reconocer las diferentes clases de números, y operar correctamente con ellos. Aplicaciones aritméticas. Conocer y manejar la

Más detalles

Unidad 1: Números reales

Unidad 1: Números reales CRITERIOS DE EVALUACIÓN Y EXIGIBLES. Unidad 1: Números reales Distintos tipos de números - Los números enteros, racionales e irracionales. - El papel de los números irracionales en el proceso de ampliación

Más detalles

Criterios de Evaluación

Criterios de Evaluación Unidad 01: Números Reales En esta unidad se profundiza en el estudio de los números reales, conocidos ya por los alumnos en la Educación Secundaria Obligatoria. Se opera con ellos, empleando aproximaciones

Más detalles

Criterios de evaluación Matemáticas - B de 4º de ESO

Criterios de evaluación Matemáticas - B de 4º de ESO UNIDAD Criterios de evaluación Matemáticas - B de 4º de ESO CRITERIOS GENERALES Unidad 1: Números reales - Dominar la expresión decimal de un número o una cantidad y calcular o acotar los errores absoluto

Más detalles

PROGRAMACIÓN 1º DE BACHILLERATO CIENCIAS DE LA NATURALEZA Y LA SALUD

PROGRAMACIÓN 1º DE BACHILLERATO CIENCIAS DE LA NATURALEZA Y LA SALUD PROGRAMACIÓN 1º DE BACHILLERATO CIENCIAS DE LA NATURALEZA Y LA SALUD EVALUACIÓN. - La nota global de cada evaluación se calcula cuantificando un 80% los exámenes que cada profesor/a efectuará al alumnado

Más detalles

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93

FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS ISBN: 978-84-941559-0-1 Depósito Legal: M-20468-2013 Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS INDICE MATEMÁTICAS BÁSICAS CONJUNTOS

Más detalles

MATEMÁTICAS 4º E.S.O. opción B

MATEMÁTICAS 4º E.S.O. opción B MATEMÁTICAS 4º E.S.O. opción B UNIDAD 1: NÚMEROS REALES Números decimales Expresión decimal de los números aproximados. Cifras significativas. Redondeo de números. Asignación de un número de cifras acorde

Más detalles

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 IES SAN BENITO Departamento de Matemáticas 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 PRUEBA EXTAORDINAORIA: La Prueba de septiembre será únicamente de contenidos

Más detalles

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. BLOQUE 1 : ARITMÉTICA Y ÁLGEBRA

SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. BLOQUE 1 : ARITMÉTICA Y ÁLGEBRA SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. BLOQUE 1 : ARITMÉTICA Y ÁLGEBRA Se comenzará el curso, si el profesor lo considera necesario, con un pequeño

Más detalles

MATEMÁTICAS I (1º BACHILLERATO)

MATEMÁTICAS I (1º BACHILLERATO) MATEMÁTICAS I (1º BACHILLERATO) 1.1.1 Contenidos Matemáticas I 1.1.1.1 Bloque 1. Aritmética y Álgebra (Total: 32 sesiones) Números racionales e irracionales. Números reales. La recta real. Valor absoluto.

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación

Más detalles

MATEMÁTICAS 1º DE BACHILLERATO

MATEMÁTICAS 1º DE BACHILLERATO POLINOMIOS Y FRACCIONES 1. Operaciones fracciones algebraicas 2. Opera y simplifica fracciones 3. Repaso fracciones 4. Fracciones equivalentes 5. Potencias de fracciones 6. Operaciones con fracciones 7.

Más detalles

OBJETIVOS ETAPA: BACHILLERATO DE CIENCIAS Y TECNOLOGÍA NIVEL: PRIMER CURSO MATERIA: MATEMÁTICAS I

OBJETIVOS ETAPA: BACHILLERATO DE CIENCIAS Y TECNOLOGÍA NIVEL: PRIMER CURSO MATERIA: MATEMÁTICAS I OBJETIVOS - Conocer los conceptos básicos del campo numérico (recta real, potencias, raíces, logaritmos...). - Dominar las técnicas básicas del cálculo en el campo de los números reales. - Averiguar y

Más detalles

CUARTO DE ESO. MATEMÁTICAS A

CUARTO DE ESO. MATEMÁTICAS A CUARTO DE ESO. MATEMÁTICAS A UNIDAD 1 1.1. Realiza operaciones combinadas con números enteros. 1.2. Realiza operaciones con fracciones. 1.3. Realiza operaciones y simplificaciones con potencias de exponente

Más detalles

Matemáticas 1º ESO. Contenidos mínimos. BLOQUE 1: Procesos, métodos y actitudes en matemáticas

Matemáticas 1º ESO. Contenidos mínimos. BLOQUE 1: Procesos, métodos y actitudes en matemáticas Matemáticas 1º ESO Contenidos mínimos BLOQUE 1: Procesos, métodos y actitudes en matemáticas Estrategias y procedimientos puestos en práctica: uso del lenguaje apropiado (gráfico, numérico, algebraico,

Más detalles

RELACIÓN DE CONTENIDOS MATEMÁTICAS 1º ESO. 2 MATEMÁTICAS 2º ESO. 4 MATEMÁTICAS 3º ESO. 6 MATEMÁTICAS 4º ESO OPCIÓN A. 8

RELACIÓN DE CONTENIDOS MATEMÁTICAS 1º ESO. 2 MATEMÁTICAS 2º ESO. 4 MATEMÁTICAS 3º ESO. 6 MATEMÁTICAS 4º ESO OPCIÓN A. 8 RELACIÓN DE CONTENIDOS Página MATEMÁTICAS 1º ESO. 2 MATEMÁTICAS 2º ESO. 4 MATEMÁTICAS 3º ESO. 6 MATEMÁTICAS 4º ESO OPCIÓN A. 8 MATEMÁTICAS 4º ESO OPCIÓN B. 10 RECUPERACIÓN MATEMÁTICAS 1º ESO. 12 RECUPERACIÓN

Más detalles

4º ESO ACADÉMICA CRITERIOS DE EVALUACIÓN Y COMPETENCIAS CLAVE ESTÁNDARES DE APRENDIZAJE EVALUABLES

4º ESO ACADÉMICA CRITERIOS DE EVALUACIÓN Y COMPETENCIAS CLAVE ESTÁNDARES DE APRENDIZAJE EVALUABLES CONTENIDOS 4º ESO ACADÉMICA CRITERIOS DE EVALUACIÓN Y COMPETENCIAS CLAVE ESTÁNDARES DE APRENDIZAJE EVALUABLES TEMA 1: Números reales Expresión decimal de los números racionales. Número real. Aproximaciones

Más detalles

RELACIÓN DE CONTENIDOS MATEMÁTICAS 1º ESO. 2 MATEMÁTICAS 2º ESO. 4 MATEMÁTICAS 3º ESO. 6 MATEMÁTICAS 4º ESO OPCIÓN A. 8

RELACIÓN DE CONTENIDOS MATEMÁTICAS 1º ESO. 2 MATEMÁTICAS 2º ESO. 4 MATEMÁTICAS 3º ESO. 6 MATEMÁTICAS 4º ESO OPCIÓN A. 8 RELACIÓN DE CONTENIDOS Página MATEMÁTICAS 1º ESO. 2 MATEMÁTICAS 2º ESO. 4 MATEMÁTICAS 3º ESO. 6 MATEMÁTICAS 4º ESO OPCIÓN A. 8 MATEMÁTICAS 4º ESO OPCIÓN B. 10 RECUPERACIÓN MATEMÁTICAS 1º ESO. 12 RECUPERACIÓN

Más detalles

Cuarto Opción B 1.Objetivos

Cuarto Opción B 1.Objetivos Cuarto Opción B 1.Objetivos _ Conocer el teorema fundamental de la numeración y pasar un número de una base a otra. _ Conocer qué son números congruentes y el concepto de restos potenciales. _ Conocer

Más detalles

CONTENIDOS MÍNIMOS DEL DEPARTAMENTO DE MATEMÁTICAS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE IES YAIZA CURSO:

CONTENIDOS MÍNIMOS DEL DEPARTAMENTO DE MATEMÁTICAS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE IES YAIZA CURSO: CONTENIDOS MÍNIMOS DEL DEPARTAMENTO DE MATEMÁTICAS PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE IES YAIZA CURSO: 2016-17 1 ÍNDICE GENERAL 1 MATEMÁTICAS 1º ESO... 3 2 MATEMÁTICAS 2º ESO.... 5 3 MATEMÁTICAS

Más detalles

CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO

CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO UNIDAD 1 1.1. Simplifica y compara fracciones y las sitúa de forma aproximada sobre la recta. 1.2. Realiza operaciones aritméticas con números fraccionarios.

Más detalles

La asistencia a clase es obligatoria. La evaluación es continua, realizando ejercicios y tareas establecidas, con aprobación de un examen final

La asistencia a clase es obligatoria. La evaluación es continua, realizando ejercicios y tareas establecidas, con aprobación de un examen final ASIGNATURA GENÉRICA PARA EL CURSO ACADÉMICO 2008-09 FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES Departamento de Economía Financiera y Contabilidad I (Economía Financiera y Actuarial) ASIGNATURA CICLO

Más detalles

Matemáticas Currículum Universal

Matemáticas Currículum Universal Matemáticas Currículum Universal Índice de contenidos 12-16 años 2013-2014 Matemáticas 12-16 años NÚMEROS NATURALES Historia de los números Sistemas de numeración Base de un sistema de numeración Números

Más detalles

Contenidos mínimos del área de matemáticas 1º ESO

Contenidos mínimos del área de matemáticas 1º ESO 1º ESO Unidad didáctica nº1: Los números naturales. Divisibilidad. Operaciones con números naturales: suma, resta, multiplicación y Calcular múltiplos y divisores de un número. Descomposición factorial

Más detalles

MATEMÁTICAS 2º BACHILLERATO

MATEMÁTICAS 2º BACHILLERATO MATEMÁTICAS 2º BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BACHILLERATO DEL CURSO 1. Utilizar los números reales, sus notaciones, operaciones y procedimientos asociados, para presentar e intercambiar información,

Más detalles

BACHILLERATO DE CIENCIAS DE LA NATURALEZA Y DE LA SALUD MATEMÁTICAS I

BACHILLERATO DE CIENCIAS DE LA NATURALEZA Y DE LA SALUD MATEMÁTICAS I BACHILLERATO DE CIENCIAS DE LA NATURALEZA Y DE LA SALUD MATEMÁTICAS I Las matemáticas del Bachillerato, en la modalidad de Ciencias de la Naturaleza y de la Salud, van dirigidas a aquellos alumnos que

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 MATEMÁTICAS APLICADAS A LAS CCSS

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 MATEMÁTICAS APLICADAS A LAS CCSS RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 DEPARTAMENTO: MATEMÁTICAS MATERIA: MATEMÁTICAS APLICADAS A LAS CCSS CURSO:1º BACH SECUENCIACIÓN DE CONTENIDOS Resolución de problemas - Algunos

Más detalles

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

02. Resolver sistemas de ecuaciones lineales por el método de Gauss. 3.6 Criterios específicos de evaluación. 01. Conocer lo que significa que un sistema sea incompatible o compatible, determinado o indeterminado, y aplicar este conocimiento para formar un sistema de un

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO.

TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO. TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO. Los contenidos seleccionados tienen la intención de aportar una formación matemática suficiente para abordar problemas del mundo social y del entorno, así

Más detalles

CRITERIOS DE EVALUACIÓN

CRITERIOS DE EVALUACIÓN + ω DEPARTAMENTO DE MATEMATICAS. I.E.S. ROSA CHACEL (Colmenar Viejo) Resumen de contenidos y criterios de evaluación MATEMÁTICAS NIVEL SUPERIOR BI (PRIMER AÑO). 1º DE BACHILLERATO. 1. NÚMEROS REALES CRITERIOS

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema 3 Ecuaciones y sistemas. Trigonometría I Trigonometría

Más detalles

CRITERIOS DE EVALUACIÓN DE 4º ESO- Opción B

CRITERIOS DE EVALUACIÓN DE 4º ESO- Opción B CRITERIOS DE EVALUACIÓN DE 4º ESO- Opción B 1. Resolver problemas relacionados con la vida diaria y otras materias del ámbito académico utilizando los distintos tipos de números y operaciones, junto con

Más detalles

Departamento de Matemáticas Contenidos mínimos 2015

Departamento de Matemáticas Contenidos mínimos 2015 CONTENIDOS MINIMOS 1º ESO 1ª U.D.- Iniciación a la Geometría Elementos básicos: punto, recta, segmento, plano, ángulo y arco. Paralelismo, perpendicularidad e incidencia de rectas. Mediatriz de un segmento

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACION BACHILLERATO

CONTENIDOS Y CRITERIOS DE EVALUACION BACHILLERATO CONTENIDOS Y CRITERIOS DE EVALUACION BACHILLERATO 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA CONTENIDOS 1ª EVALUACIÓN: 1:NUMEROS REALES Números reales: necesidad de su estudio para la comprensión de la realidad.

Más detalles

CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE Criterios de evaluación:

CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE Criterios de evaluación: CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE Criterios de evaluación: 1. Diferenciar los números pertenecientes a cada uno de los principales conjuntos numéricos. 2. Representar sobre la recta real

Más detalles

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O.

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. - Realizar operaciones básicas con números naturales. - Resolver problemas aritméticos con números naturales. - Calcular potencias y raíces cuadradas

Más detalles

Contenidos mínimos 4º E.S.O.:

Contenidos mínimos 4º E.S.O.: Contenidos mínimos 4º E.S.O.: Para la opción A: UNIDADES DIDÁCTICAS Observaciones 1.- NÚMEROS RACIONALES. - Interpretación de una fracción. Fracciones equivalentes. - Ordenación y comparación de números

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS Y RECOMENDACIONES PARA LA CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE DE 2016 1º DE ESO PLAN DE RECUPERACIÓN DE MATEMÁTICAS DE 1º ESO PARA LA PRUEBA DE SEPTIEMBRE

Más detalles

MATEMÁTICAS I CRITERIOS DE EVALUACIÓN Y COMPETENCIAS CLAVE ESTÁNDARES DE APRENDIZAJE EVALUABLES

MATEMÁTICAS I CRITERIOS DE EVALUACIÓN Y COMPETENCIAS CLAVE ESTÁNDARES DE APRENDIZAJE EVALUABLES CONTENIDOS MATEMÁTICAS I CRITERIOS DE EVALUACIÓN Y COMPETENCIAS CLAVE ESTÁNDARES DE APRENDIZAJE EVALUABLES TEMA 1: Números reales Operaciones con números reales. Ordenación. La recta real. Intervalos y

Más detalles

CURSO CONTENIDOS MÍNIMOS. Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas.

CURSO CONTENIDOS MÍNIMOS. Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas. CURSO 2009-2010 DEPARTAMENTO: MATEMÁTICAS CURSO: 1º ESO ÁREA: MATEMÁTICAS Los números naturales. Operaciones y problemas. Cálculo y operaciones de potencias y raíces cuadradas. Cálculo del m.c.d. y m.c.m.

Más detalles

Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES

Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES Septiembre 2.016 Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS U 1 Fracciones y decimales. Números racionales. Expresión fraccionaria - Números enteros. - Fracciones. - Fracciones propias

Más detalles

Propedéutico de Matemáticas

Propedéutico de Matemáticas Propedéutico de Matemáticas TEMARIO DEL MODULO I, ARITMÉTICA Y ALGEBRA CAPÍTULO 1: CONCEPTOS ELEMENTALES DE ARITMÉTICA Número primo absoluto o simple. Número compuesto. Múltiplo. Submúltiplo, factor o

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES MATRICES 1. MATRICES Y TIPOS DE MATRICES 2. OPERACIONES CON MATRICES 3. PRODUCTO DE MATRICES 4. MATRIZ TRASPUESTA 5. MATRIZ INVERSA 6. RANGO DE MATRICES DETERMINANTES 7. DETERMINANTES DE ORDEN 2 Y 3 8.

Más detalles

1º ESO SECUENCIACIÓN DE CONTENIDOS: 1º Evaluación: 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico

1º ESO SECUENCIACIÓN DE CONTENIDOS: 1º Evaluación: 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico 1º ESO 1-Los números naturales 4.-Los números enteros. 5.- Los números decimales. 6.- El sistema métrico decimal. 2-Potencias y raíces. 3-Divisibilidad 7.- Las fracciones. 8.- Operaciones con fracciones.

Más detalles

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O.

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. Matemáticas 2º E.S.O. a) Contenidos comunes. Utilizar estrategias y técnicas sencillas en la resolución de problemas. b) Números. Conocer los conceptos de

Más detalles

1º ESO MATEMÁTICAS. No se dan tareas, para superar la signatura se debe aprobar el examen que constará de 10 preguntas.

1º ESO MATEMÁTICAS. No se dan tareas, para superar la signatura se debe aprobar el examen que constará de 10 preguntas. 1º ESO MATEMÁTICAS CONTENIDOS MÍNIMOS. Conocer los números naturales, su utilidad y las propiedades generales del sistema de numeración decimal. Realizar correctamente operaciones con números naturales.

Más detalles

MATEMÁTICAS 2º DE BACHILLERATO

MATEMÁTICAS 2º DE BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.

Más detalles

I.E.S. Galileo Galilei PROGRAMACIÓN MATEMÁTICAS I 1º BACHILLERATO

I.E.S. Galileo Galilei PROGRAMACIÓN MATEMÁTICAS I 1º BACHILLERATO I.E.S. Galileo Galilei PROGRAMACIÓN MATEMÁTICAS I 1º BACHILLERATO Curso 2014-2015 MD75PR03RG REVISIÓN: 0 Página 1 de 19 Destino del Documento Jefe de Estudios OBJETIVOS Los objetivos generales de la etapa

Más detalles

Contenidos mínimos 2º ESO

Contenidos mínimos 2º ESO Página 1 de 9 MATEMÁTICAS 2º E.S.O. CONTENIDOS MÍNIMOS Números. 1.1 Números naturales y números enteros. 1.2 Operaciones con números enteros. 1.3 Divisibilidad. Criterios. 1.4 Números primos y números

Más detalles

DE REFUERZO MATEMÁTICAS I Y MATEMÁTICAS A LAS CIENCIAS SOCIALES I PENDIENTES 1ºBACHILLERATO CURSO Departamento de Matemáticas

DE REFUERZO MATEMÁTICAS I Y MATEMÁTICAS A LAS CIENCIAS SOCIALES I PENDIENTES 1ºBACHILLERATO CURSO Departamento de Matemáticas PLAN DE REFUERZO MATEMÁTICAS I Y MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1ºBACHILLERATO CURSO 2016-2017 IES Grande Covián 1 PLAN DE REFUERZO Materia: Matemáticas I y Matemáticas Aplicadas

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Alumno/a: Curso: PLAN DE RECUPERACIÓN PARA ALUMNOS/AS PEDIENTES DE MATEMÁTICAS I

Alumno/a: Curso: PLAN DE RECUPERACIÓN PARA ALUMNOS/AS PEDIENTES DE MATEMÁTICAS I Alumno/a: Curso: PLAN DE RECUPERACIÓN PARA ALUMNOS/AS PEDIENTES DE MATEMÁTICAS I Se realizarán tres pruebas a lo largo del Curso: 1ª prueba: 19 de noviembre (jueves), a las 9:1 en el Salón de Actos. ª

Más detalles

Criterios de evaluación Matemáticas I.

Criterios de evaluación Matemáticas I. Criterios de evaluación Matemáticas I. BLOQUE I. Aritmética y Álgebra. 1. Usar los números reales (racionales e irracionales) para presentar e intercambiar información, así como para resolver problemas

Más detalles

ORIENTACIONES DE MATEMÁTICAS CONTENIDOS MÍNIMOS DE MATEMÁTICAS

ORIENTACIONES DE MATEMÁTICAS CONTENIDOS MÍNIMOS DE MATEMÁTICAS IES SAN BENITO ORIENTACIONES DE MATEMÁTICAS MATEMÁTICAS 1º ESO MATERIALES Cuaderno de clase Actividades de Matemáticas (actividades realizadas durante el curso). Libro de texto. Otros materiales que sirvan

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACION MATEMATICAS I: 1:NÚMEROS REALES

CONTENIDOS Y CRITERIOS DE EVALUACION MATEMATICAS I: 1:NÚMEROS REALES CONTENIDOS Y CRITERIOS DE EVALUACION MATEMATICAS I: 1:NÚMEROS REALES Números reales: necesidad de su estudio para la comprensión de la realidad. Valor absoluto. Desigualdades. Distancias en la recta real.

Más detalles

Unidad 1. Números reales

Unidad 1. Números reales MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º ESO Unidad 1. Números reales NÚMEROS DECIMALES - Expresión decimal de los números aproximados. Cifras significativas. - Redondeo de números. - Asignación

Más detalles

DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE PENDIENTES CURSO 2014/15

DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE PENDIENTES CURSO 2014/15 CONSEJERÍA DE EDUCACIÓN I.E.S. Antonio de Ulloa DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE PENDIENTES CURSO 2014/15 EDUCACIÓN SECUNDARIA OBLIGATORIA El alumnado de ESO superará las Matemáticas

Más detalles

MATEMÁTICAS 3º E.S.O.

MATEMÁTICAS 3º E.S.O. MATEMÁTICAS 3º E.S.O. UNIDAD 1: LOS NÚMEROS Y SUS UTILIDADES I Números enteros Los números naturales. Utilidad. Divisibilidad. Revisión de los procedimientos básicos. Operaciones con números enteros. Números

Más detalles

INDICE Capitulo 1. Ecuaciones Fundamentos Teóricos Capitulo 2. Polinomios

INDICE Capitulo 1. Ecuaciones Fundamentos Teóricos Capitulo 2. Polinomios INDICE Prólogo X Introducción XI Capitulo 1. Ecuaciones 1 Revisión de Álgebra Elemental 1 1. Conceptos Básicos 1 1.a. Expresión algebraica 1, 1.b. Valor numérico de un polinomio 2 2. Operaciones con Polinomios

Más detalles

Las Matemáticas en el Bachillerato

Las Matemáticas en el Bachillerato Las Matemáticas en el Bachillerato 1. Horas lectivas de Matemáticas 2. Contenidos según el DOGV 3. Algunas matizaciones sobre los contenidos 4. Algunos problemas que afectan al aprendizaje 5. Posibles

Más detalles

CONTENIDOS MÍNIMOS DEPARTAMENTO DE MATEMÁTICAS. CURSO 2015/2016

CONTENIDOS MÍNIMOS DEPARTAMENTO DE MATEMÁTICAS. CURSO 2015/2016 CONTENIDOS MÍNIMOS DEPARTAMENTO DE MATEMÁTICAS. CURSO 2015/2016 El presente documento contiene los contenidos mínimos de cada nivel de la ESO además de los de 1º de Bachillerato. Asimismo, en cada nivel

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales. DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,

Más detalles

PROGRAMA DE RECUPERACIÓN PEDAGÓGICA

PROGRAMA DE RECUPERACIÓN PEDAGÓGICA DE RECUPERACIÓN PEDAGÓGICA 1er año de secundaria Estadística. Inecuaciones. Operaciones con números racionales. Ángulos. - Frecuencia absoluta y frecuencia relativa - Moda, mediana y media - Gráficas circulares

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID Principales conceptos que se tendrán en cuenta en la elaboración de las pruebas de Acceso a la Universidad para los estudiantes provenientes del Bachillerato LOGSE de la materia "Matemáticas II" ÁLGEBRA

Más detalles

OBJETIVOS MÍNIMOS Y TEMPORALIZACIÓN

OBJETIVOS MÍNIMOS Y TEMPORALIZACIÓN OBJETIVOS MÍNIMOS Y TEMPORALIZACIÓN La programación de Matemáticas I para la modalidad de Ciencias se basará en los procedimientos, contenidos y criterios de evaluación expuestos en el Decreto 21/2015,

Más detalles

CRITERIOS DE EVALUACIÓN DE BACHILLERATO CURSO 2015/2016

CRITERIOS DE EVALUACIÓN DE BACHILLERATO CURSO 2015/2016 CRITERIOS DE EVALUACIÓN DE BACHILLERATO CURSO 2015/2016 MATEMÁTICAS APLICADAS A LAS CCSS I UNIDAD 1: NÚMEROS REALES. Dados varios números, los clasifica en los distintos campos numéricos. Interpreta raíces

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

Pruebas extraordinarias de septiembre Bachillerato

Pruebas extraordinarias de septiembre Bachillerato Pruebas extraordinarias de septiembre Bachillerato El Departamento de Matemáticas establece como prueba extraordinaria un único examen, en el que se incluirán los contenidos mínimos establecidos para cada

Más detalles

Tramo A Contenidos Conceptuales Contenidos Procedimentales Números reales

Tramo A Contenidos Conceptuales Contenidos Procedimentales Números reales Tramo A Números reales Valoración del análisis de situaciones en base a la lógica y a las herramientas de la Matemática para su comprensión y la toma de decisiones. Valoración del lenguaje claro y preciso

Más detalles