Streamango | Полночное солнце | More Details

DPTO. DE AMTEMÁTICAS I.E.S. GALLICUM CURSO 2012/13


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DPTO. DE AMTEMÁTICAS I.E.S. GALLICUM CURSO 2012/13"

Transcripción

1 DESARROLLO DE LAS UNIDADES DIDÁCTICAS MATEMÁTICAS II Según REAL DECRETO 1467/2007, de 2 de noviembre, por el que se establece la estructura del bachillerato y se fijan sus enseñanzas mínimas, estas son para matemáticas II. 1. Algebra lineal: Estudio de las matrices como herramienta para manejar y operar con datos estructurados en tablas y grafos. Operaciones con matrices. Aplicación de las operaciones y de sus propiedades en la resolución de problemas extraídos de contextos reales. Determinantes. Propiedades elementales de los determinantes. Rango de una matriz. Discusión y resolución de sistemas de ecuaciones lineales. 2. Geometría: Vectores en el espacio tridimensional. Producto escalar, vectorial y mixto. Significado geométrico. Ecuaciones de la recta y el plano en el espacio. Resolución de problemas de posiciones relativas. Resolución de problemas métricos relacionados con el calculo de ángulos, distancias, aéreas y volúmenes. 3. Análisis: Concepto de límite de una función. Calculo de límites. Continuidad de una función. Tipos de discontinuidad. Interpretación geométrica y física del concepto de derivada de una función en un punto. Función derivada. Calculo de derivadas. Derivada de la suma, el producto y el cociente de funciones y de la función compuesta. Aplicación de la derivada al estudio de las propiedades locales de una función. Problemas de optimización. Introducción al concepto de integral definida a partir del cálculo de aéreas encerradas bajo una curva. Técnicas elementales para el cálculo de primitivas. Aplicación al cálculo de aéreas de regiones planas. NOTA: Se consideran comunes a todos los temas los siguientes criterios de evaluación: 10. Transcribir problemas reales a un lenguaje algebraico, utilizar las técnicas matemáticas apropiadas en cada caso para resolverlos e interpretar las soluciones de acuerdo con el enunciado. 11. Utilizar los recursos tecnológicos tanto para la obtención de la información necesaria como para la realización de cálculos y representaciones gráficas, como en el proceso de resolución de problemas o de exposición de conclusiones. 12. Realizar razonamientos matemáticos, tanto inductivos como deductivos, para justificar algunos resultados. 13. Realizar investigaciones que demanden la utilización combinada de diferentes herramientas, métodos y estrategias. 14. Abordar las tareas propuestas con interés y curiosidad y exponer los procesos de forma clara y ordenada, verificando la validez de las soluciones.. UNIDAD I: CONTINUIDAD (10 Horas) 1

2 1.- Repasar la terminología de las funciones. 1.- Idea intuitiva del concepto de límite de una función Caracterizar la continuidad de una función en un en un punto. punto mediante el cálculo de límites. 2.- Cálculo de límites: límites en el infinito y asíntotas. 2.- Clasificar los distintos tipos de discontinuidades 3.- Continuidad de una función en un punto y en un que puede presentar una función. intervalo: tipos de discontinuidad. 3.- Aplicar los teoremas fundamentales referidos a 4.- Propiedades de las funciones continuas en un funciones continuas en intervalos cerrados. intervalo cerrado: Teorema de Weierstrass, Teorema de Bolzano y propiedad de Darboux. 1. Comprender los conceptos básicos y utilizar la terminología adecuada del análisis para encontrar e interpretar características de las funciones expresadas de forma explícita. 2. Usar las destrezas más habituales para el cálculo de límites. 1.- Obtener y clasificar los puntos de discontinuidad de una función. 2.- Discutir la continuidad de una función según los valores de los parámetros que intervienen en su expresión algebraica. 3.- Utilizar el teorema de Bolzano para la acotación de los ceros de una función, reconociendo su aplicabilidad bajo distintos enunciados. 1.- Establecer los conceptos de función derivada y derivadas sucesivas. 2.- Conocer la relación entre continuidad y derivabilidad de una función en un punto. 3.- Caracterizar la derivabilidad de una función en un punto mediante el cálculo de las derivadas laterales en él, interpretando el significado geométrico. 4.- Calcular funciones derivadas aplicando las reglas de derivación, las derivadas de las funciones elementales y la regla de la cadena. 2. Usar las destrezas habituales para el cálculo de derivadas. 1.- Calcular derivadas de funciones en un punto mediante la aplicación directa de la definición. 2.- Estudiar la continuidad y derivabilidad de una función. 3.- Discutir la continuidad y la derivabilidad de una función según los valores de los parámetros que intervienen en su expresión analítica. 4.- Obtener la función derivada de una función compuesta utilizando las técnicas adecuadas. UNIDAD II: DERIVADAS (10 Horas) 1.- Concepto de derivada: derivadas laterales. 2.- Relación entre continuidad y derivabilidad. 3.- Cálculo de derivadas. UNIDAD III: APLICACIONES DE LAS DERIVADAS I (8 Horas) 1.- Formalizar la definición de recta tangente a una 1.- Interpretación geométrica de la derivada de una 2

3 función en un punto y caracterizar su pendiente función en un punto: recta tangente y recta como el valor de la derivada en ese punto. normal a una función en un punto. 2.- Conocer las interpretaciones desde el punto de 2.- Teorema de Rolle: interpretación geométrica. vista físico y geométrico, así como sus principales 3.- Teorema del valor medio: interpretación consecuencias de los teoremas de Rolle y del geométrica e interpretación física. valor medio. 4.- Regla de L Hópital. 3.- Desarrollar procedimientos de aplicación de la regla de L Hôpital en el cálculo de límites indeterminados con funciones derivables. 3. Extraer información, a partir del estudio de las propiedades locales y globales, que permita esbozar las gráficas de funciones polinómicas, racionales, exponenciales, logarítmicas y trigonométricas. 1.- Obtener la ecuación de la recta tangente y la ecuación de la recta normal a una curva en un punto. 2.- Aplicar el teorema de Rolle en distintos contextos comprobando la verificación de sus hipótesis. 3.- Aplicar el teorema del valor medio en distintos contextos comprobando la verificación de sus hipótesis. 4.- Aplicar correctamente la regla de L Hópital en el cálculo de límites. 3

4 1.- Establecer los procedimientos propios del cálculo diferencial para el estudio del crecimiento y curvatura de una función. 2.- Caracterizar los extremos relativos y los puntos de inflexión en funciones derivables. 3.- Conocer las aplicaciones del cálculo de derivadas en la resolución de problemas de optimización en distintos contextos. 4.- Establecer los aspectos básicos en el estudio de las propiedades de una función, tanto directas como obtenidas a partir de sus derivadas, y sus aplicaciones en la representación gráfica de la función. UNIDAD IV: APLICACIONES DE LAS DERIVADAS II (16 Horas) 1.- Crecimiento y decrecimiento de una función en un intervalo. 2.- Teorema fundamental de monotonía. 3.- Extremos relativos de una función. 4.- Concavidad y convexidad de una función en un intervalo. 5.- Relación entre la segunda derivada y la curvatura. 6.- Puntos de inflexión de una función. 3. Extraer información, a partir del estudio de las propiedades locales y globales, que permita esbozar las gráficas de funciones polinómicas, racionales, exponenciales, logarítmicas y trigonométricas. 4. Utilizar los conceptos y técnicas de límites y derivadas para estudiar fenómenos sociales, naturales y tecnológicos. 1.- Estudiar los intervalos de crecimiento y decrecimiento de una función y determinar sus extremos relativos. 2.- Estudiar los intervalos de concavidad y convexidad de una función y determinar sus puntos de inflexión. 3.- Aplicar el cálculo de derivadas y los procedimientos de caracterización de los extremos de una función y de los puntos de inflexión en el planteamiento y resolución de problemas en distintos contextos. 4.- Representar gráficamente funciones de distinto tipo estudiando previamente las características que mejor las identifiquen: dominio, recorrido, simetrías, puntos de corte con los ejes, extremos relativos, puntos de inflexión, intervalos de monotonía y curvatura y asíntotas. UNIDAD V: CÁLCULO DE PRIMITIVAS (16 Horas) 1.- Conocer los conceptos de primitiva e integral indefinida de una función, y la propiedades lineales de la integración. 2.- Conocer los métodos básicos de integración. 1.- Primitiva de una función. 2.- Integral indefinida. 3.- Propiedades lineales de la integración. 4.- Integrales inmediatas. 5.- Métodos de integración. 2. Usar las destrezas más habituales para el cálculo de integrales. 1.- Obtener la integral indefinida de una función aplicando correctamente los métodos estudiados: cambio de variable, partes y funciones racionales. 2.- Encontrar la expresión algebraica de una función de la que se conocen determinadas condiciones que verifican sus derivadas sucesivas. 4

5 1.- Conocer, de forma intuitiva, la noción de integral de Riemann como integral definida mediante límites de áreas de rectángulos y su relación con el cálculo del área encerrada bajo una curva. 2.- Conocer el concepto de función integral y el cálculo de su función derivada mediante el teorema fundamental del cálculo integral. 3.- Utilizar la regla de Barrow como procedimiento que facilita el cálculo de la integral definida de una función continua en un intervalo. 4.- Utilizar la integral definida para calcular áreas de recintos planos en los que intervengan rectas y una o dos curvas definidas por funciones elementales. 5.- Utilizar la integral definida para calcular volúmenes de cuerpos de revolución. UNIDAD VI: INTEGRAL DEFINIDA (8Horas) 1.- Introducción al concepto de integral de Riemann. 2.- Propiedades de la integral definida. 3.- Teorema del valor medio del cálculo integral. 4.- Función integral. 5.- Teorema fundamental del cálculo integral. 6.- Regla de Barrow. 7.- Áreas de recintos limitados por curvas. 8.- Volúmenes de cuerpos de revolución. 5. Calcular áreas de regiones limitadas por rectas y curvas sencillas fácilmente representables, y aplicar este cálculo a situaciones de la naturaleza o la tecnología. 1.- Aplicar la regla de Barrow para el cálculo de integrales definidas de funciones continuas en intervalos cerrados en las que la obtención de la primitiva requiera la aplicación de cualquiera de los métodos de integración conocidos. 2.- Calcular el valor del área de un recinto plano limitado por una función continua y el eje de abscisas. 3.- Calcular el área de un recinto plano limitado por dos curvas estudiando previamente su posición y los puntos de corte con los ejes. 4.- Obtener el volumen de un cuerpo de revolución engendrado al girar un segmento de curva alrededor del eje de abscisas. 1.- Los citados anteriormente. UNIDAD VII: MATRICES (8 Horas) 1.- Utilizar las matrices para realizar cálculos y resolver problemas. 2.- Conocer el rango de una matriz y su relación con la dependencia lineal. 3.- Aplicar el método de Gauss para la obtención del rango de una matriz y para la obtención de la inversa de una matriz cuadrada. 1.- Matrices. 2.- Igualdad de matrices. 3.- Tipos especiales de matrices: matriz fila, matriz columna, matriz diagonal, etc. 4.- Operaciones con matrices. 5.- Propiedades de las operaciones con matrices. 6.- Dependencia e independencia lineal de filas (columnas). 7.- Rango de una matriz 8.- Inversa de una matriz cuadrada. 6. Utilizar el lenguaje matricial y las operaciones con matrices y determinantes como herramienta útil para representar e interpretar situaciones diversas y para resolver problemas relacionados con la organización de datos, sistemas de ecuaciones y la geometría analítica. 1.- Operar correctamente con matrices. 2.- Calcular potencias n-simas de matrices cuadradas, en casos sencillos, mediante la aplicación del principio de inducción. 3.- Calcular correctamente el rango de una matriz. 4.- Calcular correctamente la matriz inversa de una dada (matrices cuadradas de orden 2 ó 3). 1.- Los citados anteriormente. 5

6 UNIDAD VIII: DETERMINANTES (10 Horas) 1.- Conocer la definición por recurrencia de los determinantes. 2.- Obtener el valor de determinantes de segundo y tercer orden por cálculo directo. 3.- Aplicar las propiedades de los determinantes para obtener el valor de determinantes de orden superior a tres. 4.- Calcular el rango de una matriz y la matriz inversa con la ayuda de los determinantes. 1.- Determinante de una matriz cuadrada de segundo orden. 2.- Adjunto y menor complementario de un elemento de una matriz. 3.- Desarrollo de un determinante por los elementos de una fila. 4.- Regla de Sarrus. 5.- Propiedades de los determinantes. 6.- Cálculo de determinantes de orden superior a tres. 7.- Cálculo del rango de una matriz. 8.- Cálculo de la inversa de una matriz. 6. Utilizar el lenguaje matricial y las operaciones con matrices y determinantes como herramienta útil para representar e interpretar situaciones diversas y para resolver problemas relacionados con la organización de datos, sistemas de ecuaciones y la geometría analítica. 1.- Calcular determinantes de orden 2 y 3 directamente. 2.- Calcular determinantes de orden superior a tres aplicando correctamente las propiedades de los mismos y el desarrollo por los elementos de una fila (o columna). 3.- Calcular el rango de una matriz. 4.- Calcular la matriz inversa de una dada. 1.- Los citados anteriormente. UNIDAD IX: SISTEMAS DE ECUACIONES LINEALES (10 Horas) 1.- Utilizar la notación matricial para expresar y obtener información de sistemas de ecuaciones lineales. 2.- Utilizar el teorema de Rouché para estudiar sistemas de ecuaciones lineales. 3.- Resolver sistemas empleando el método de Gauss y la regla de Cramer. 4.- Saber discutir, y en su caso resolver, sistemas dependientes de un parámetro. 7. Utilizar diversos procedimientos del álgebra matricial o de los determinantes para resolver sistemas de ecuaciones lineales. 1.- Estudiar la compatibilidad y resolver sistemas de ecuaciones lineales aplicando el método que se considere más adecuado en cada momento. 2.- Discutir y resolver sistemas de ecuaciones lineales que estén afectados por un parámetro. 3.- Aplicar las técnicas relativas a la resolución de sistemas de ecuaciones lineales para resolver situaciones relacionadas con las propias matemáticas, con otras ciencias o con la vida cotidiana. 1.- Sistemas de ecuaciones lineales. 2.- Sistemas equivalentes. 3.- Clasificación de los sistemas. 4.- Notación matricial de los sistemas. 5.- Teorema de Rouché. 6.- Método de Gauss. 7.- Regla de Cramer. 6

7 UNIDAD X: VECTORES (6 Horas) 1.- Conocer y utilizar el producto escalar de vectores en el espacio y sus propiedades. 2.- Conocer y utilizar el producto vectorial y el producto mixto de vectores en el espacio, y su relación con el cálculo de áreas y volúmenes de cuerpos geométricos, 8. Utilizar el lenguaje vectorial y las operaciones con vectores como herramienta útil para representar e interpretar situaciones diversas y problemas relacionados con la geometría, la física y demás ciencias. 1.- Calcular correctamente el producto escalar, el producto vectorial y el producto mixto de dos o tres vectores, según corresponda. 2.- Aplicar los diferentes productos de vectores al cálculo de módulos, ángulos, áreas y volúmenes. 3.- Aplicar los diferentes productos de vectores a la resolución de situaciones geométricas sencillas y relacionadas con los vectores del espacio. 1.- El conjunto R 3 : operaciones. 2.- Vectores fijos y vectores libres en el espacio. 3.- Operaciones con vectores libres. 4.- Combinaciones lineales y dependencia lineal de V vectores. Bases de Producto escalar. Propiedades. Expresión analítica. Módulo de un vector. Ángulo de dos vectores. 6.- Producto vectorial de dos vectores. Propiedades. Expresión analítica. 7.- Producto mixto de tres vectores. Propiedades. Expresión analítica. UNIDAD XI: GEOMETRÍA EN EL ESPACIO (6 Horas) 1.- Reforzar los conceptos relativos a las figuras geométricas elementales en el espacio. 2.- Describir matemáticamente la recta y el plano con ayuda de las técnicas propias de la geometría analítica. 3.- Abordar situaciones geométricas desde el punto de vista cartesiano. 9. Utilizar las ecuaciones de la recta y el plano en el espacio y las propiedades de las operaciones con vectores para resolver problemas afines o métricos. 1.- Sistemas de referencia. Coordenadas de puntos y vectores. 2.- Coordenadas del punto medio de un segmento y del baricentro de un triángulo. 3.- Ecuaciones de la recta. 4.- Ecuaciones del plano. 1.- Calcular diferentes tipos de ecuaciones de una recta determinada por suficientes condiciones que la definan. 2.- Calcular diferentes tipos de ecuación de un plano determinado por suficientes condiciones que lo definan. 7

8 UNIDAD XII: PROBLEMAS AFINES Y MÉTRICOS (10 Horas) 1.- Reforzar los conceptos relativos a las diferentes posiciones relativas que se pueden dar entre las figuras geométricas elementales del espacio: las rectas y los planos. 2.- Describir matemáticamente, y con la ayuda de las técnicas algebraicas, las posiciones relativas entre rectas y planos. 3.- Reforzar los conceptos geométricos relacionados con la medida de ángulos, las distancias entre puntos, rectas y planos y las áreas y volúmenes de cuerpos elementales. 4.- Desarrollar procedimientos y herramientas matemáticas susceptibles de ser utilizadas para resolver situaciones relacionadas con la medida en el espacio. 5.- Abordar situaciones geométricas desde el punto de vista cartesiano. 9. Utilizar las ecuaciones de la recta y el plano en el espacio y las propiedades de las operaciones con vectores para resolver problemas afines o métricos. 1.- Determinar la posición relativa de un conjunto de rectas y de planos dados mediante sus respectivas ecuaciones algebraicas. 2.- Interpretar de forma geométrica la resolución de un sistema de ecuaciones. 3.- Calcular ángulos, distancias áreas y volúmenes, con el apoyo de los procedimientos propios de la geometría analítica en el espacio. 4.- Calcular, mediante los procedimientos propios de la geometría analítica, las coordenadas de puntos o las ecuaciones de rectas y planos determinados por condiciones de incidencia, paralelismo, perpendicularidad, distancias y ángulos. 1.- Posición relativa de punto y recta, y punto y plano. 2.- Posición relativa de dos rectas. 3.- Posición relativa de dos y tres planos. 4.- Posición relativa de recta y plano. 5.- Ángulos: de dos rectas, de dos planos y de recta y plano. 6.- Distancias: de punto a recta, de punto a plano, de dos rectas, de dos planos y de recta y plano. 8

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

EXTRACTO DE PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º BACHILLERATO CONTENIDOS MÍNIMOS

EXTRACTO DE PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º BACHILLERATO CONTENIDOS MÍNIMOS MATERIA: CURSO: MATEMÁTICAS 2º BACHILLERATO CONTENIDOS MÍNIMOS ÁLGEBRA LINEAL 1) Realizar operaciones con matrices (con un número de filas y columnas no superior a tres) así como obtener la traspuesta

Más detalles

PLAN DE ESTUDIOS DE MS

PLAN DE ESTUDIOS DE MS PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los

Más detalles

MATERIA: MATEMÁTICAS II CURSO

MATERIA: MATEMÁTICAS II CURSO . I. Currículum de Bachillerato Castilla-La Mancha. Matemáticas II Los contenidos de referencia de la P.A.E.G. serán los establecidos en el Decreto 85/2008, de 17-06-2008, por el que se establece y ordena

Más detalles

Departamento de Matemáticas IES El señor de Bembibre Curso Matemáticas II OBJETIVOS - MATEMÁTICAS II. Análisis

Departamento de Matemáticas IES El señor de Bembibre Curso Matemáticas II OBJETIVOS - MATEMÁTICAS II. Análisis Matemáticas II OBJETIVOS - MATEMÁTICAS II Análisis En este bloque se pretende que los alumnos sean capaces de: - Comprender el concepto de función real de variable real. - Comprender y aplicar el concepto

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

CONTENIDO PRÓLOGO LAS FUNCIONES... 5

CONTENIDO PRÓLOGO LAS FUNCIONES... 5 CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

MATEMÁTICAS II OBJETIVOS

MATEMÁTICAS II OBJETIVOS MATEMÁTICAS II OBJETIVOS 1. Dominar los conceptos y la nomenclatura asociados a los sistemas de ecuaciones y sus soluciones (compatible, incompatible, determinado, indeterminado ), e interpretarlos geométricamente

Más detalles

Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional.

Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional. Otras páginas Matemáticas 2º MATEMÁTICAS II Álgebra: Espacios Vectoriales Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional. Combinación lineal.

Más detalles

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA

CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CÁLCULO DIFERENCIAL AÑO 2016 I. FUNDAMENTACIÓN El curso de Cálculo Diferencial proporciona las herramientas fundamentales para entender la

Más detalles

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.

Más detalles

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 IES SAN BENITO Departamento de Matemáticas 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 PRUEBA EXTAORDINAORIA: La Prueba de septiembre será únicamente de contenidos

Más detalles

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA MATEMATICA II SILABO

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA MATEMATICA II SILABO FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA I. DATOS GENERALES MATEMATICA II SILABO 1.1. Código : 04130 1.2. Requisito : Matemática I (04123) 1.3. Ciclo Académico

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación

Más detalles

UNIDAD 7. SISTEMA MÉTRICO DECIMAL

UNIDAD 7. SISTEMA MÉTRICO DECIMAL UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

MATEMÁTICAS II. 2º BACHILLERATO (Modalidad: Ciencias y Tecnología) Desarrollado en DECRETO 67/2008, de 19 de junio. B.O.C.M.: 27 de junio de 2008.

MATEMÁTICAS II. 2º BACHILLERATO (Modalidad: Ciencias y Tecnología) Desarrollado en DECRETO 67/2008, de 19 de junio. B.O.C.M.: 27 de junio de 2008. MATEMÁTICAS II 2º BACHILLERATO (Modalidad: Ciencias y Tecnología) Desarrollado en DECRETO 67/2008, de 19 de junio. B.O.C.M.: 27 de junio de 2008. PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO:

Más detalles

Departamento de Matemáticas. Matemáticas. 2º Bachillerato

Departamento de Matemáticas. Matemáticas. 2º Bachillerato Matemáticas 2º Bachillerato 1.- CONTENIDOS DE MATEMÁTICAS II QUE SERVIRÁN DE BASE PARA LA ELABORACIÓN DE LAS PROPUESTAS DE EXAMEN EN LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD DE EXTREMADURA CURSO 2006-2007

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

UNIDAD 6: ECUACIONES OBJETIVOS

UNIDAD 6: ECUACIONES OBJETIVOS UNIDAD 6: ECUACIONES Conocer los conceptos de ecuación, así como la terminología asociada. Identificar y clasificar los distintos tipos de ecuaciones polinómicas en función de su grado y número de incógnitas.

Más detalles

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas

Más detalles

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1º ESO CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1. Utilizar numeros naturales, enteros, fracciones y decimales sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar

Más detalles

MÓDULO DE MATEMÁTICAS I Contenidos

MÓDULO DE MATEMÁTICAS I Contenidos Bloque 1. Contenidos comunes MÓDULO DE MATEMÁTICAS I Contenidos Utilización de estrategias y técnicas en la resolución de problemas tales como análisis del enunciado y comprobación de la solución obtenida.

Más detalles

SÍLABO MATEMÁTICA II

SÍLABO MATEMÁTICA II I. DATOS INFORMATIVOS SÍLABO MATEMÁTICA II II. III. 1.1. Código : 000008 1.. Ciclo : Segundo 1.. Créditos : 1.. Semestre Académico : 015 II 1.5. Duración : 17 Semanas /85 horas/ 1.6. Horas semanales :

Más detalles

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL

Programa(s) Educativo(s): CHIHUAHUA Créditos 5.4. Teoría: 4 horas Práctica PROGRAMA DEL CURSO: Taller: CALCULO DIFERENCIAL E INTEGRAL DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0102 UNIVERSIDAD AUTÓNOMA DE Cuatrimestre: 1 CHIHUAHUA Área en plan de estudios: Ciencias

Más detalles

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad PROGRAMACIÓN DIDÁCTICA Materia IV Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Geometría plana y figuras geométricas Créditos 3 (30 horas) Bloque II Créditos Ecuaciones y sistemas 2 (20

Más detalles

Teórico: Semestre: I Práctico: Código: Créditos: 3. Horas Trabajo Estudiante: 128

Teórico: Semestre: I Práctico: Código: Créditos: 3. Horas Trabajo Estudiante: 128 PROGRAMAS DE:: CIIENCIIAS BÁSIICAS E IINGENIIERÍÍAS DEPARTAMENTO DE MATEMÁTIICAS Y ESTADÍÍSTIICA CONTENIIDOS PROGRAMÁTIICOS POR UNIIDADES DE APRENDIIZAJJE Curso: Cálculo I Teórico: Semestre: I Práctico:

Más detalles

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O.

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. - Realizar operaciones básicas con números naturales. - Resolver problemas aritméticos con números naturales. - Calcular potencias y raíces cuadradas

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

CÁLCULO INTEGRAL TEMARIO

CÁLCULO INTEGRAL TEMARIO CÁLCULO INTEGRAL TEMARIO 1. LA INTEGRAL 1.1 La integral indefinida Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Elementos

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física

CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física BIBLIOGRAFÍA: M.Spivak, Cálculo Infinitesimal N. Piskunov, Cálculo Diferencial e Integral 4 1/2 hs de Teórico por semana (67 1/2

Más detalles

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

MATEMATICA PARA ADMINISTRACION

MATEMATICA PARA ADMINISTRACION MATEMATICA PARA ADMINISTRACION I. DATOS GENERALES: CURSO : Matemática para Administración CODIGO : A3A CICLO : I I DURACIÓN : 40 HORAS/Práctica sem. : 2 PREREQUISITO : Matemática Básica II. OBJETIVOS GENERALES:

Más detalles

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas II Licenciatura en Informática IFM - 0424 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Criterios de Evaluación MÍNIMOS

Criterios de Evaluación MÍNIMOS s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales. DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS 1. IDENTIFICACIÓN DE LA ASIGNATURA NOMBRE ÁREA PROGRAMA ACADÉMICO REQUISITO CRÉDITOS ACADÉMICOS INTENSIDAD HORARIA

Más detalles

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL 2016 I PARCIAL ÁLGEBRA Y GEOMETRÍA ANALÍTICA

Más detalles

PROGRAMA INSTRUCCIONAL MATEMÁTICA I

PROGRAMA INSTRUCCIONAL MATEMÁTICA I UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM

Más detalles

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA SILABO MATEMÁTICA I

FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA SILABO MATEMÁTICA I FACULTAD DE CIENCIAS AGROPECUARIAS ESCUELA ACADÉMICO PROFESIONAL DE MEDICINA VETERINARIA SILABO MATEMÁTICA I I. DATOS GENERALES 1.1 Código : 0401-04123 1.2 Requisito : Ninguno 1.3 Ciclo Académico : Primero

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles

GUÍA DOCENTE MATEMATICAS I. 4.a Profesor que imparte la docencia (Si fuese impartida por mas de uno/a incluir todos/as) :

GUÍA DOCENTE MATEMATICAS I. 4.a Profesor que imparte la docencia (Si fuese impartida por mas de uno/a incluir todos/as) : GUÍA DOCENTE 2013-2014 MATEMATICAS I 1. Denominación de la asignatura: MATEMATICAS I Titulación DOBLE GRADO EN DERECHO Y ADE Código 6673 2. Materia o módulo a la que pertenece la asignatura: MATEMATICAS

Más detalles

CALCULO INTEGRAL 2AMB

CALCULO INTEGRAL 2AMB INSTITUTO TECNOLÓGICO SUPERIOR DEL SUR DEL ESTADO DE YUCATÁN Organismo Público Descentralizado del Gobierno del Estado de Yucatán CALCULO INTEGRAL 2AMB Horario: Martes: 9:30 a 11:30 Jueves: 8:30 a 9:30

Más detalles

Todo el alumnado que tenga un buen nivel podrá asistir a las clases de profundización que serán el por las tardes.

Todo el alumnado que tenga un buen nivel podrá asistir a las clases de profundización que serán el por las tardes. SEGUNDO DE BACHILLERATO CIENCIAS NATURALEZA Y SALUD A continuación se especifican los contenidos y los objetivos mínimos y deseables para cada una de las unidades didácticas de cada bloque. Finalmente

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Syllabus Asignatura : Matemáticas Empresariales

Syllabus Asignatura : Matemáticas Empresariales Syllabus Asignatura : Grado oficial en Marketing (GRMK) Curso 2012/2013 Profesor/es: Periodo de impartición: José Manuel Casteleiro Villalba Ramón Arilla Llorente 1 er cuatrimestre, 1º de carrera Tipo:

Más detalles

I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Calculo Integral (462)

I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Calculo Integral (462) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL SECRETARÍA ACADÉMICA Coordinación de Investigación, Innovación, Evaluación y Documentación Educativas. I.- DATOS DE IDENTIFICACIÓN Nombre

Más detalles

4º E.S.O. Matemáticas A

4º E.S.O. Matemáticas A 4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con

Más detalles

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente:

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente: Tasa de variación media DERIVADAS La tasa de variación media TVM de una unción ( en un intervalo (x, x se deine como: TVM (a, b ( x ( x x x Si consideramos x x + h, podemos expresar la TVM como: Interpretación

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Departamento de MATEMÁTICAS ETAPA EDUCATIVA: ESO

Departamento de MATEMÁTICAS ETAPA EDUCATIVA: ESO Página 1 CONTENIDOS Y CRITERIOS DE EVALUACIÓN MÍNIMOS. La Prueba Extraordinaria para los alumnos que no superen la Evaluación Final se realizará con un mismo examen sobre los contenidos mínimos, fijada

Más detalles

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos 4.1 CONTENIDOS PARA PRIMERO DE LA ESO Conceptos I. Aritmética y álgebra. 1. Números naturales. _ Significado y uso en distintos contextos. _ El sistema de numeración decimal. 2. Operaciones con los números

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles

Titulación Tipo Curso Semestre Geología FB 1 1

Titulación Tipo Curso Semestre Geología FB 1 1 Matemáticas para la geología 2013/2014 Código: 101045 Créditos: 10 Titulación Tipo Curso Semestre 2500254 Geología FB 1 1 Profesor de contacto Nombre: Ferran Cedó Giné Correo electrónico: [email protected]

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO )

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO ) PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO 2015-2016) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. Criterio 1: Identificar

Más detalles

Asignaturas antecedentes y subsecuentes Álgebra elemental y Geometría Elemental

Asignaturas antecedentes y subsecuentes Álgebra elemental y Geometría Elemental PROGRAMA DE ESTUDIOS CÁLCULO DIFERENCIAL Área a la que pertenece: ÁREA GENERAL Horas teóricas: 4 Horas prácticas: 2 Créditos: 10 Clave: F0022 Asignaturas antecedentes y subsecuentes Álgebra elemental y

Más detalles

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 1.6 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

SÍLABO DE MATEMÁTICA I

SÍLABO DE MATEMÁTICA I SÍLABO DE MATEMÁTICA I I. DATOS GENERALES 1.1. Facultad: Ingeniería 1.2. Carrera: Ingeniería de Sistemas 1.3. Área Académica: Formación Básica 1.4. Ciclo: II 1.5. Semestre: 2014-I 1.6. Prerrequisito: Matemática

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES P ÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 215-216 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

ESO. Procedimientos e instrumentos de evaluación.

ESO. Procedimientos e instrumentos de evaluación. ESO Procedimientos e instrumentos de evaluación. Como procedimientos e instrumentos de evaluación se tendrá en cuenta dos aspectos: Procedimientos de evaluación de conocimientos: Las pruebas escritas,

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*

Más detalles

CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS

CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS CICLO: TERCERO NIVEL: SEXTO ÁREA: MATEMÁTICAS CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS C.E.3.1. En un contexto de resolución de problemas sencillos, anticipar una solución razonable y buscar los

Más detalles

UNIVERSIDAD AUTONOMA DE TAMAULIPAS

UNIVERSIDAD AUTONOMA DE TAMAULIPAS R-RS-01-25-03 UNIVERSIDAD AUTONOMA DE TAMAULIPAS NOMBRE DE LA FACULTAD O UNIDAD ACADEMICA NOMBRE DEL PROGRAMA INGENIERO INDUSTRIAL NOMBRE DE LA ASIGNATURA GEOMETRIA ANALITICA PROGRAMA DE LA ASIGNATURA

Más detalles

CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD

CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD Clasificar los tipos de caracteres y las variables estadísticas para una determinada población. Elaborar tablas de frecuencias absolutas, relativas

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105 e+ I f 1.1 Números reales y desigualdades 2 1.2 Coordenadas y rectas 16 1.3 Circunferencias y gráficas de ecuaciones 32 1.4 Funciones 42 1.5 Gráficas de funciones S5 1.6 Funciones trigonométricas 61 Ejercicios

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

PRECALCULO. Nomenclatura del Curso : MAT-001. Nombre del Curso : Precalculo. Prerrequisitos : Ninguno. Número de Créditos : 5. Horas Teóricas : 45

PRECALCULO. Nomenclatura del Curso : MAT-001. Nombre del Curso : Precalculo. Prerrequisitos : Ninguno. Número de Créditos : 5. Horas Teóricas : 45 Nomenclatura del Curso : MAT-001 Nombre del Curso : Precalculo Prerrequisitos : Ninguno Número de Créditos : 5 Horas Teóricas : 45 Horas prácticas : 30 Horas Investigación : 45 Docente : INTRODUCCION PRECALCULO

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2014/2015 MATEMÁTICAS II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad La siguiente relación de objetivos,

Más detalles

DEPARTAMENTO MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO MATEMÁTICAS. IES GALLICUM MATEMÁTICAS 2º E.S.O. UNIDAD I: EL NÚMERO ENTERO (16 Horas) 1.- Conocer y distinguir las distintas clases de números (naturales y negativos). (1, 6) 2.- Realizar con soltura operaciones con los números

Más detalles

Universidad Nacional del Litoral Facultad de Humanidades y Ciencias Instituto Superior de Música

Universidad Nacional del Litoral Facultad de Humanidades y Ciencias Instituto Superior de Música APROBADO POR RES. N 0/0 Universidad Nacional del Litoral Facultad de Humanidades y Ciencias Instituto Superior de Música MATEMÁTICA I PROGRAMA Equipo de Cátedra: Lic. Claudia Zurschmitten Año Académico

Más detalles

PROGRAMA INSTRUCCIONAL MATEMÁTICA

PROGRAMA INSTRUCCIONAL MATEMÁTICA UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE RELACIONES INDUSTRIALES ESCUELA DE ADMINISTRACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA CÓDIGO ASIGNADO

Más detalles