Book Club | The King Of Food | Temporada 4

Primer curso Contenidos


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Primer curso Contenidos"

Transcripción

1 Primer curso Contenidos Bloque 1. Contenidos comunes. Utilización de estrategias y técnicas simples en la resolución de problemas tales como el análisis del enunciado, el ensayo y error o la resolución de un problema más simple, y comprobación de la solución obtenida. Expresión verbal del procedimiento que se ha seguido en la resolución de problemas. Interpretación de mensajes que contengan informaciones sobre cantidades y medidas o sobre elementos o relaciones espaciales. Confianza en las propias capacidades para afrontar problemas, comprender las relaciones matemáticas y tomar decisiones a partir de ellas. Perseverancia y flexibilidad en la búsqueda de soluciones a los problemas. Utilización de herramientas tecnológicas para facilitar los cálculos de tipo numérico, algebraico o estadístico, las representaciones funcionales y la comprensión de propiedades geométricas. Bloque 2. Números. Divisibilidad de números naturales. Múltiplos y divisores comunes a varios números. Aplicaciones de la divisibilidad en la resolución de problemas asociados a situaciones cotidianas. Necesidad de los números negativos para expresar estados y cambios. Reconocimiento y conceptualización en contextos reales. Significado y usos de las operaciones con números enteros. Utilización de la jerarquía y propiedades de las operaciones y de las reglas de uso de los paréntesis en cálculos sencillos. Fracciones y decimales en entornos cotidianos. Diferentes significados y usos de las fracciones. Operaciones con fracciones: suma, resta, producto y cociente. Números decimales. Relaciones entre fracciones y decimales. Elaboración y utilización de estrategias personales para el cálculo mental, para el cálculo aproximado y con calculadoras. Razón y proporción. Identificación y utilización en situaciones de la vida cotidiana de magnitudes directamente proporcionales. Aplicación a la resolución de problemas en las que intervenga la proporcionalidad directa. Porcentajes para expresar composiciones o variaciones. Cálculo mental y escrito con porcentajes habituales. Bloque 3. Álgebra. Empleo de letras para simbolizar números inicialmente desconocidos y números sin concretar. Utilidad de la simbolización para expresar cantidades en distintos contextos. Traducción de expresiones del lenguaje cotidiano al algebraico y viceversa. Búsqueda y expresión de propiedades, relaciones y regularidades en secuencias numéricas. Obtención de valores numéricos en fórmulas sencillas. Valoración de la precisión y simplicidad del lenguaje algebraico para representar y comunicar diferentes situaciones de la vida cotidiana. Bloque 4. Geometría. Elementos básicos para la descripción de las figuras geométricas en el plano. Utilización de la terminología adecuada para describir con precisión situaciones, formas, propiedades y configuraciones del mundo físico. Análisis de relaciones y propiedades de figuras en el plano: paralelismo y perpendicularidad. Empleo de métodos inductivos y deductivos para analizar relaciones y propiedades en el plano. Construcciones geométricas sencillas: mediatriz, bisectriz. 1

2 Clasificación de triángulos y cuadriláteros a partir de diferentes criterios. Estudio de algunas propiedades y relaciones en estos polígonos. Polígonos regulares. La circunferencia y el círculo. Construcción de polígonos regulares con los instrumentos de dibujo habituales. Medida y cálculo de ángulos en figuras planas. Estimación y cálculo de perímetros de figuras. Estimación y cálculo de áreas mediante fórmulas, triangulación y cuadriculación. Simetría de figuras planas. Apreciación de la simetría en la naturaleza y en las construcciones. Empleo de herramientas informáticas para construir, simular e investigar relaciones entre elementos geométricos. Bloque 5. Funciones y gráficas. Organización de datos en tablas de valores. Coordenadas cartesianas. Representación de puntos en un sistema de ejes coordenados. Identificación de puntos a partir de sus coordenadas. Identificación de relaciones de proporcionalidad directa a partir del análisis de su tabla de valores. Utilización de contraejemplos cuando las magnitudes no sean directamente proporcionales. Identificación y verbalización de relaciones de dependencia en situaciones cotidianas. Interpretación puntual y global de informaciones presentadas en una tabla o representadas en una gráfica. Detección de errores en las gráficas que pueden afectar a su interpretación. Bloque 6. Estadística y probabilidad. Formulación de conjeturas sobre el comportamiento de fenómenos aleatorios sencillos y diseño de experiencias para su comprobación. Reconocimiento y valoración de las matemáticas para interpretar y describir situaciones inciertas. Diferentes formas de recogida de información. Organización en tablas de datos recogidos en una experiencia. Frecuencias absolutas y relativas. Diagramas de barras, de líneas y de sectores. Análisis de los aspectos más destacables de los gráficos. Criterios de evaluación 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información. Se trata de comprobar la capacidad de identificar y emplear los números y las operaciones siendo consciente de su significado y propiedades, elegir la forma de cálculo más apropiada (mental, escrita o con calculadora) y transmitir informaciones utilizando los números de manera adecuada. Se debe prestar una especial atención a valorar, en casos sencillos, la competencia en el uso de operaciones combinadas como síntesis de la secuencia de operaciones aritméticas. 2. Resolver problemas para los que se precise la utilización de las cuatro operaciones con números enteros, decimales y fraccionarios, utilizando la forma de cálculo apropiada y valorando la adecuación del resultado al contexto. Se trata de valorar la capacidad para asignar a las distintas operaciones nuevos significados y determinar cuál de los métodos de cálculo es adecuado a cada situación. Se pretende evaluar, asimismo, cómo se interpretan los resultados obtenidos en los cálculos y comprobar si se adopta la actitud que lleva a no tomar el resultado por bueno sin contrastarlo con la situación de partida. 3. Identificar y describir regularidades, pautas y relaciones en conjuntos de números, utilizar letras para simbolizar distintas cantidades y obtener expresiones algebraicas como síntesis en secuencias numéricas, así como el valor numérico de fórmulas sencillas. 2

3 Este criterio pretende comprobar la capacidad para percibir en un conjunto numérico aquello que es común, la secuencia lógica con que se ha construido, un criterio que permita ordenar sus elementos y, cuando sea posible, expresar algebraicamente la regularidad percibida. Se pretende, asimismo, valorar el uso del signo igual como asignador y el manejo de la letra en sus diferentes acepciones. Forma parte de este criterio también la obtención del valor numérico en fórmulas simples con una sola letra. 4. Reconocer y describir figuras planas, utilizar sus propiedades para clasificarlas y aplicar el conocimiento geométrico adquirido para interpretar y describir el mundo físico, haciendo uso de la terminología adecuada. Se pretende comprobar la capacidad de utilizar los conceptos básicos de la geometría para abordar diferentes situaciones y problemas de la vida cotidiana. Se pretende evaluar también la experiencia adquirida en la utilización de diferentes elementos y formas geométricas. 5. Estimar y calcular perímetros, áreas y ángulos de figuras planas, utilizando la unidad de medida adecuada. Se pretende valorar la capacidad de estimar algunas medidas de figuras planas por diferentes métodos y de emplear la unidad y precisión más adecuada. Se valorará también el empleo de métodos de descomposición por medio de figuras elementales para el cálculo de áreas de figuras planas del entorno. 6. Organizar e interpretar informaciones diversas mediante tablas y gráficas, e identificar relaciones de dependencia en situaciones cotidianas. Este criterio pretende valorar la capacidad de identificar las variables que intervienen en una situación cotidiana, la relación de dependencia entre ellas y visualizarla gráficamente. Se trata de evaluar, además, el uso de las tablas como instrumento para recoger información y transferirla a unos ejes coordenados, así como la capacidad para interpretar de forma cualitativa la información presentada en forma de tablas y gráficas. 7. Hacer predicciones sobre la posibilidad de que un suceso ocurra a partir de información previamente obtenida de forma empírica. Se trata de valorar la capacidad para diferenciar los fenómenos deterministas de los aleatorios y, en estos últimos, analizar las regularidades obtenidas al repetir un número significativo de veces una experiencia aleatoria y hacer predicciones razonables a partir de los mismos. Además, este criterio pretende verificar la comprensión del concepto de frecuencia relativa y, a partir de ella, la capacidad de inducir la noción de probabilidad. 8. Utilizar estrategias y técnicas simples de resolución de problemas tales como el análisis del enunciado, el ensayo y error o la resolución de un problema más sencillo, y comprobar la solución obtenida y expresar, utilizando el lenguaje matemático adecuado a su nivel, el procedimiento que se ha seguido en la resolución. Con este criterio se valora la forma de enfrentarse a tareas de resolución de problemas para los que no se dispone de un procedimiento estándar que permita obtener la solución. Se evalúa desde la comprensión del enunciado a partir del análisis de cada una de las partes del texto y la identificación de los aspectos más relevantes, hasta la aplicación de estrategias simples de resolución, así como el hábito y la destreza necesarias para comprobar la solución. Se trata de evaluar, asimismo, la perseverancia en la búsqueda de soluciones y la confianza en la propia capacidad para lograrlo, y valorar la capacidad de transmitir con un lenguaje adecuado, las ideas y procesos personales desarrollados, de modo que se hagan entender y entiendan a sus compañeros. También se pretende valorar su actitud positiva para realizar esta actividad de intercambio. 3

4 Segundo curso Contenidos Bloque 1. Contenidos comunes. Utilización de estrategias y técnicas en la resolución de problemas tales como el análisis del enunciado, el ensayo y error o la división del problema en partes, y comprobación de la solución obtenida. Descripción verbal de procedimientos de resolución de problemas utilizando términos adecuados. Interpretación de mensajes que contengan informaciones de carácter cuantitativo o sobre elementos o relaciones espaciales. Confianza en las propias capacidades para afrontar problemas, comprender las relaciones matemáticas y tomar decisiones a partir de ellas. Perseverancia y flexibilidad en la búsqueda de soluciones a los problemas y en la mejora de las encontradas. Utilización de herramientas tecnológicas para facilitar los cálculos de tipo numérico, algebraico o estadístico, las representaciones funcionales y la comprensión de propiedades geométricas. Bloque 2. Números. Potencias de números enteros con exponente natural. Operaciones con potencias. Utilización de la notación científica para representar números grandes. Cuadrados perfectos. Raíces cuadradas. Estimación y obtención de raíces aproximadas. Relaciones entre fracciones, decimales y porcentajes. Uso de estas relaciones para elaborar estrategias de cálculo práctico con porcentajes. Utilización de la forma de cálculo mental, escrito o con calculadora, y de la estrategia para contar o estimar cantidades más apropiadas a la precisión exigida en el resultado y la naturaleza de los datos. Proporcionalidad directa e inversa. Análisis de tablas. Razón de proporcionalidad. Aumentos y disminuciones porcentuales. Resolución de problemas relacionados con la vida cotidiana en los que aparezcan relaciones de proporcionalidad directa o inversa. Bloque 3. Álgebra. El lenguaje algebraico para generalizar propiedades y simbolizar relaciones. Obtención de fórmulas y términos generales basada en la observación de pautas y regularidades. Obtención del valor numérico de una expresión algebraica. Significado de las ecuaciones y de las soluciones de una ecuación. Resolución de ecuaciones de primer grado. Transformación de ecuaciones en otras equivalentes. Interpretación de la solución. Utilización de las ecuaciones para la resolución de problemas. Resolución de estos mismos problemas por métodos no algebraicos: ensayo y error dirigido. Bloque 4. Geometría. Figuras con la misma forma y distinto tamaño. La semejanza. Proporcionalidad de segmentos. Identificación de relaciones de semejanza. Ampliación y reducción de figuras. Obtención, cuando sea posible, del factor de escala utilizado. Razón entre las superficies de figuras semejantes. Utilización de los teoremas de Tales y Pitágoras para obtener medidas y comprobar relaciones entre figuras. 4

5 Poliedros y cuerpos de revolución. Desarrollos planos y elementos característicos. Clasificación atendiendo a distintos criterios. Utilización de propiedades, regularidades y relaciones para resolver problemas del mundo físico. Volúmenes de cuerpos geométricos. Resolución de problemas que impliquen la estimación y el cálculo de longitudes, superficies y volúmenes. Utilización de procedimientos tales como la composición, descomposición, intersección, truncamiento, dualidad, movimiento, deformación o desarrollo de poliedros para analizarlos u obtener otros. Bloque 5. Funciones y gráficas. Descripción local y global de fenómenos presentados de forma gráfica. Aportaciones del estudio gráfico al análisis de una situación: crecimiento y decrecimiento. Continuidad y discontinuidad. Cortes con los ejes. Máximos y mínimos relativos. Obtención de la relación entre dos magnitudes directa o inversamente proporcionales a partir del análisis de su tabla de valores y de su gráfica. Interpretación de la constante de proporcionalidad. Aplicación a situaciones reales. Representación gráfica de una situación que viene dada a partir de una tabla de valores, de un enunciado o de una expresión algebraica sencilla. Interpretación de las gráficas como relación entre dos magnitudes. Observación y experimentación en casos prácticos. Utilización de calculadoras gráficas y programas de ordenador para la construcción e interpretación de gráficas. Bloque 6. Estadística y probabilidad. Diferentes formas de recogida de información. Organización de los datos en tablas. Frecuencias absolutas y relativas, ordinarias y acumuladas. Diagramas estadísticos. Análisis de los aspectos más destacables de los gráficos. Medidas de centralización: media, mediana y moda. Significado, estimación y cálculo. Utilización de las propiedades de la media para resolver problemas. Utilización de la media, la mediana y la moda para realizar comparaciones y valoraciones. Utilización de la hoja de cálculo para organizar los datos, realizar los cálculos y generar los gráficos más adecuados. Criterios de evaluación 1. Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver problemas relacionados con la vida diaria. Se trata de valorar la capacidad de identificar y emplear los números y las operaciones siendo consciente de su significado y propiedades, elegir la forma de cálculo apropiada (mental, escrita o con calculadora) y estimar la coherencia y precisión de los resultados obtenidos. Entre las operaciones a las que se refiere este criterio deben considerarse incluidas las potencias de exponente natural. Adquiere especial relevancia evaluar el uso de diferentes estrategias que permitan simplificar el cálculo con fracciones, decimales y porcentajes, así como la habilidad para aplicar esos cálculos a una amplia variedad de contextos. 2. Identificar relaciones de proporcionalidad numérica y geométrica y utilizarlas para resolver problemas en situaciones de la vida cotidiana. Se pretende comprobar la capacidad de identificar, en diferentes contextos, una relación de proporcionalidad entre dos magnitudes. Se trata, asimismo, de utilizar diferentes estrategias (empleo de tablas, obtención y uso de la constante de proporcionalidad, reducción a la unidad, etc.) para obtener elementos desconocidos en un problema a partir de otros conocidos en situaciones de la vida real en las que existan relaciones de proporcionalidad. 5

6 3. Utilizar el lenguaje algebraico para simbolizar, generalizar e incorporar el planteamiento y resolución de ecuaciones de primer grado como una herramienta más con la que abordar y resolver problemas. Se pretende comprobar la capacidad de utilizar el lenguaje algebraico para generalizar propiedades sencillas y simbolizar relaciones, así como plantear ecuaciones de primer grado para resolverlas por métodos algebraicos y también por métodos de ensayo y error. Se pretende evaluar, también, la capacidad para poner en práctica estrategias personales como alternativa al álgebra a la hora de plantear y resolver los problemas. Asimismo, se ha de procurar valorar la coherencia de los resultados. 4. Estimar y calcular longitudes, áreas y volúmenes de espacios y objetos con una precisión acorde con la situación planteada y comprender los procesos de medida, expresando el resultado de la estimación o el cálculo en la unidad de medida más adecuada. Mediante este criterio se valora la capacidad para comprender y diferenciar los conceptos de longitud, superficie y volumen y seleccionar la unidad adecuada para cada uno de ellos. Se trata de comprobar, además, si se han adquirido las capacidades necesarias para estimar el tamaño de los objetos. Más allá de la habilidad para memorizar fórmulas y aplicarlas, este criterio pretende valorar el grado de profundidad en la comprensión de los conceptos implicados en el proceso y la diversidad de métodos que se es capaz de poner en marcha. 5. Interpretar relaciones funcionales sencillas dadas en forma de tabla, gráfica, a través de una expresión algebraica o mediante un enunciado, obtener valores a partir de ellas y extraer conclusiones acerca del fenómeno estudiado. Este criterio pretende valorar el manejo de los mecanismos que relacionan los distintos tipos de presentación de la información, en especial el paso de la gráfica correspondiente a una relación de proporcionalidad a cualquiera de los otros tres: verbal, numérico o algebraico. Se trata de evaluar también la capacidad de analizar una gráfica y relacionar el resultado de ese análisis con el significado de las variables representadas. 6. Formular las preguntas adecuadas para conocer las características de una población y recoger, organizar y presentar datos relevantes para responderlas, utilizando los métodos estadísticos apropiados y las herramientas informáticas adecuadas. Se trata de verificar, en casos sencillos y relacionados con su entorno, la capacidad de desarrollar las distintas fases de un estudio estadístico: formular la pregunta o preguntas que darán lugar al estudio, recoger la información, organizarla en tablas y gráficas, hallar valores relevantes (media, moda, valores máximo y mínimo, rango) y obtener conclusiones razonables a partir de los datos obtenidos. También se pretende valorar la capacidad para utilizar la hoja de cálculo, para organizar y generar las gráficas más adecuadas a la situación estudiada. 7. Utilizar estrategias y técnicas de resolución de problemas, tales como el análisis del enunciado, el ensayo y error sistemático, la división del problema en partes, así como la comprobación de la coherencia de la solución obtenida, y expresar, utilizando el lenguaje matemático adecuado a su nivel, el procedimiento que se ha seguido en la resolución. Con este criterio se valora la forma de enfrentarse a tareas de resolución de problemas para los que no se dispone de un procedimiento estándar que permita obtener la solución. Se evalúa desde la comprensión del enunciado a partir del análisis de cada una de las partes del texto y la identificación de los aspectos más relevantes, hasta la aplicación de estrategias de resolución, así como el hábito y la destreza necesarias para comprobar la corrección de la solución y su coherencia con el problema planteado. Se trata de evaluar, asimismo, la perseverancia en la búsqueda de soluciones y la confianza en la propia capacidad para lograrlo y valorar la capacidad de transmitir con un lenguaje suficientemente preciso, las ideas y procesos personales desarrollados, de modo que se hagan entender y entiendan a sus compañeros. También se pretende valorar su actitud positiva para realizar esta actividad de contraste. 6

7 Tercer curso Contenidos Bloque 1. Contenidos comunes. Planificación y utilización de estrategias en la resolución de problemas tales como el recuento exhaustivo, la inducción o la búsqueda de problemas afines, y comprobación del ajuste de la solución a la situación planteada. Descripción verbal de relaciones cuantitativas y espaciales, y procedimientos de resolución utilizando la terminología precisa. Interpretación de mensajes que contengan informaciones de carácter cuantitativo o simbólico o sobre elementos o relaciones espaciales. Confianza en las propias capacidades para afrontar problemas, comprender las relaciones matemáticas y tomar decisiones a partir de ellas. Perseverancia y flexibilidad en la búsqueda de soluciones a los problemas y en la mejora de las encontradas. Utilización de herramientas tecnológicas para facilitar los cálculos de tipo numérico, algebraico o estadístico, las representaciones funcionales y la comprensión de propiedades geométricas. Bloque 2. Números. Números decimales y fracciones. Transformación de fracciones en decimales y viceversa. Números decimales exactos y periódicos. Fracción generatriz. Operaciones con fracciones y decimales. Cálculo aproximado y redondeo. Cifras significativas. Error absoluto y relativo. Utilización de aproximaciones y redondeos en la resolución de problemas de la vida cotidiana con la precisión requerida por la situación planteada. Potencias de exponente entero. Significado y uso. Su aplicación para la expresión de números muy grandes y muy pequeños. Operaciones con números expresados en notación científica. Uso de la calculadora. Representación en la recta numérica. Comparación de números racionales. Bloque 3. Álgebra. Análisis de sucesiones numéricas. Progresiones aritméticas y geométricas. Sucesiones recurrentes. Las progresiones como sucesiones recurrentes. Curiosidad e interés por investigar las regularidades, relaciones y propiedades que aparecen en conjuntos de números. Traducción de situaciones del lenguaje verbal al algebraico. Transformación de expresiones algebraicas. Igualdades notables. Resolución de ecuaciones de primer y segundo grado con una incógnita. Sistemas de dos ecuaciones lineales con dos incógnitas. Resolución de problemas mediante la utilización de ecuaciones, sistemas y otros métodos personales. Valoración de la precisión, simplicidad y utilidad del lenguaje algebraico para resolver diferentes situaciones de la vida cotidiana. Bloque 4. Geometría. Determinación de figuras a partir de ciertas propiedades. Lugar geométrico. Aplicación de los teoremas de Tales y Pitágoras a la resolución de problemas geométricos y del medio físico. Traslaciones, simetrías y giros en el plano. Elementos invariantes de cada movimiento. Uso de los movimientos para el análisis y representación de figuras y configuraciones geométricas. Planos de simetría en los poliedros. 7

8 Reconocimiento de los movimientos en la naturaleza, en el arte y en otras construcciones humanas. Coordenadas geográficas y husos horarios. Interpretación de mapas y resolución de problemas asociados. Curiosidad e interés por investigar sobre formas, configuraciones y relaciones geométricas. Bloque 5. Funciones y gráficas. Análisis y descripción cualitativa de gráficas que representan fenómenos del entorno cotidiano y de otras materias. Análisis de una situación a partir del estudio de las características locales y globales de la gráfica correspondiente: dominio, continuidad, monotonía, extremos y puntos de corte. Uso de las tecnologías de la información para el análisis conceptual y reconocimiento de propiedades de funciones y gráficas. Formulación de conjeturas sobre el comportamiento del fenómeno que representa una gráfica y su expresión algebraica. Análisis y comparación de situaciones de dependencia funcional dadas mediante tablas y enunciados. Utilización de modelos lineales para estudiar situaciones provenientes de los diferentes ámbitos de conocimiento y de la vida cotidiana, mediante la confección de la tabla, la representación gráfica y la obtención de la expresión algebraica. Utilización de las distintas formas de representar la ecuación de la recta. Bloque 6. Estadística y probabilidad. Necesidad, conveniencia y representatividad de una muestra. Métodos de selección aleatoria y aplicaciones en situaciones reales. Atributos y variables discretas y continuas. Agrupación de datos en intervalos. Histogramas y polígonos de frecuencias. Construcción de la gráfica adecuada a la naturaleza de los datos y al objetivo deseado. Media, moda, cuartiles y mediana. Significado, cálculo y aplicaciones. Análisis de la dispersión: rango y desviación típica. Interpretación conjunta de la media y la desviación típica. Utilización de las medidas de centralización y dispersión para realizar comparaciones y valoraciones. Actitud crítica ante la información de índole estadística. Utilización de la calculadora y la hoja de cálculo para organizar los datos, realizar cálculos y generar las gráficas más adecuadas. Experiencias aleatorias. Sucesos y espacio muestral. Utilización del vocabulario adecuado para describir y cuantificar situaciones relacionadas con el azar. Cálculo de probabilidades mediante la regla de Laplace. Formulación y comprobación de conjeturas sobre el comportamiento de fenómenos aleatorios sencillos. Cálculo de la probabilidad mediante la simulación o experimentación. Utilización de la probabilidad para tomar decisiones fundamentadas en diferentes contextos. Reconocimiento y valoración de las matemáticas para interpretar, describir y predecir situaciones inciertas. Criterios de evaluación 1. Utilizar los números racionales, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver problemas relacionados con la vida diaria. Se trata de valorar la capacidad de identificar y emplear los números y las operaciones siendo conscientes de su significado y propiedades, elegir la forma de cálculo apropiada: mental, escrita o con calculadora, y estimar la coherencia y precisión de los resultados obtenidos. Es relevante también la adecuación de la forma de expresar los números: decimal, fraccionaria o en notación científica, a la situación planteada. En los problemas que se han de plantear en 8

9 este nivel adquiere especial relevancia el empleo de la notación científica así como el redondeo de los resultados a la precisión requerida y la valoración del error cometido al hacerlo. 2. Expresar mediante el lenguaje algebraico una propiedad o relación dada mediante un enunciado y observar regularidades en secuencias numéricas obtenidas de situaciones reales mediante la obtención de la ley de formación y la fórmula correspondiente, en casos sencillos. A través de este criterio, se pretende comprobar la capacidad de extraer la información relevante de un fenómeno para transformarla en una expresión algebraica. En lo referente al tratamiento de pautas numéricas, se valora si se está capacitado para analizar regularidades y obtener expresiones simbólicas, incluyendo formas iterativas y recursivas. 3. Resolver problemas de la vida cotidiana en los que se precise el planteamiento y resolución de ecuaciones de primer y segundo grado o de sistemas de ecuaciones lineales con dos incógnitas. Este criterio va dirigido a comprobar la capacidad para aplicar las técnicas de manipulación de expresiones literales para resolver problemas que puedan ser traducidos previamente a ecuaciones y sistemas. La resolución algebraica no se plantea como el único método de resolución y se combina también con otros métodos numéricos y gráficos, mediante el uso adecuado de los recursos tecnológicos. 4. Reconocer las transformaciones que llevan de una figura geométrica a otra mediante los movimientos en el plano y utilizar dichos movimientos para crear sus propias composiciones y analizar, desde un punto de vista geométrico, diseños cotidianos, obras de arte y configuraciones presentes en la naturaleza. Con este criterio se pretende valorar la comprensión de los movimientos en el plano, para que puedan ser utilizados como un recurso más de análisis en una formación natural o en una creación artística. El reconocimiento de los movimientos lleva consigo la identificación de sus elementos característicos: ejes de simetría, centro y amplitud de giro, etc. Igualmente los lugares geométricos se reconocerán por sus propiedades, no por su expresión algebraica. Se trata de evaluar, además, la creatividad y capacidad para manipular objetos y componer movimientos para generar creaciones propias. 5. Utilizar modelos lineales para estudiar diferentes situaciones reales expresadas mediante un enunciado, una tabla, una gráfica o una expresión algebraica. Este criterio valora la capacidad de analizar fenómenos físicos, sociales o provenientes de la vida cotidiana que pueden ser expresados mediante una función lineal, construir la tabla de valores, dibujar la gráfica utilizando las escalas adecuadas en los ejes y obtener la expresión algebraica de la relación. Se pretende evaluar también la capacidad para aplicar los medios técnicos al análisis de los aspectos más relevantes de una gráfica y extraer, de ese modo, la información que permita profundizar en el conocimiento del fenómeno estudiado. 6. Elaborar e interpretar informaciones estadísticas teniendo en cuenta la adecuación de las tablas y gráficas empleadas, y analizar si los parámetros son más o menos significativos. Se trata de valorar la capacidad de organizar, en tablas de frecuencias y gráficas, información de naturaleza estadística, atendiendo a sus aspectos técnicos, funcionales y estéticos (elección de la tabla o gráfica que mejor presenta la información), y calcular, utilizando si es necesario la calculadora o la hoja de cálculo, los parámetros centrales (media, mediana y moda) y de dispersión (recorrido y desviación típica) de una distribución. Asimismo, se valorará la capacidad de interpretar información estadística dada en forma de tablas y gráficas y de obtener conclusiones pertinentes de una población a partir del conocimiento de sus parámetros más representativos. 7. Hacer predicciones sobre la posibilidad de que un suceso ocurra a partir de información previamente obtenida de forma empírica o como resultado del recuento de posibilidades, en casos sencillos. Se pretende medir la capacidad de identificar los sucesos elementales de un experimento aleatorio sencillo y otros sucesos asociados a dicho experimento. También la capacidad de 9

10 determinar e interpretar la probabilidad de un suceso a partir de la experimentación o del cálculo (regla de Laplace), en casos sencillos. Por ello tienen especial interés las situaciones que exijan la toma de decisiones razonables a partir de los resultados de la experimentación, simulación o, en su caso, del recuento. 8. Planificar y utilizar estrategias y técnicas de resolución de problemas tales como el recuento exhaustivo, la inducción o la búsqueda de problemas afines y comprobar el ajuste de la solución a la situación planteada y expresar verbalmente con precisión, razonamientos, relaciones cuantitativas, e informaciones que incorporen elementos matemáticos, valorando la utilidad y simplicidad del lenguaje matemático para ello. Se trata de evaluar la capacidad para planificar el camino hacia la resolución de un problema e incorporar estrategias más complejas a su resolución. Se evalúa, así mismo, la perseverancia en la búsqueda de soluciones, la coherencia y ajuste de las mismas a la situación que ha de resolverse así como la confianza en la propia capacidad para lograrlo. También, se trata de valorar la precisión del lenguaje utilizado para expresar todo tipo de informaciones que contengan cantidades, medidas, relaciones, numéricas y espaciales, así como estrategias y razonamientos utilizados en la resolución de un problema. 10

11 Cuarto curso. Opción A Contenidos Bloque 1. Contenidos comunes. Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como la emisión y justificación de hipótesis o la generalización. Expresión verbal de argumentaciones, relaciones cuantitativas y espaciales, y procedimientos de resolución de problemas con la precisión y rigor adecuados a la situación. Interpretación de mensajes que contengan argumentaciones o informaciones de carácter cuantitativo o sobre elementos o relaciones espaciales. Confianza en las propias capacidades para afrontar problemas, comprender las relaciones matemáticas y tomar decisiones a partir de ellas. Perseverancia y flexibilidad en la búsqueda de soluciones a los problemas y en la mejora de las encontradas. Utilización de herramientas tecnológicas para facilitar los cálculos de tipo numérico, algebraico o estadístico, las representaciones funcionales y la comprensión de propiedades geométricas. Bloque 2. Números. Interpretación y utilización de los números y las operaciones en diferentes contextos, eligiendo la notación y precisión más adecuadas en cada caso. Proporcionalidad directa e inversa. Aplicación a la resolución de problemas de la vida cotidiana. Los porcentajes en la economía. Aumentos y disminuciones porcentuales. Porcentajes sucesivos. Interés simple y compuesto. Uso de la hoja de cálculo para la organización de cálculos asociados a la resolución de problemas cotidianos y financieros. Intervalos. Significado y diferentes formas de expresar un intervalo. Representación de números en la recta numérica. Bloque 3. Bloque Álgebra. Manejo de expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. Resolución gráfica y algebraica de los sistemas de ecuaciones. Resolución de problemas cotidianos y de otras áreas de conocimiento mediante ecuaciones y sistemas. Resolución de otros tipos de ecuaciones mediante ensayo-error o a partir de métodos gráficos con ayuda de los medios tecnológicos. Bloque 4. Geometría. Aplicación de la semejanza de triángulos y el teorema de Pitágoras para la obtención indirecta de medidas. Resolución de problemas geométricos frecuentes en la vida cotidiana. Utilización de otros conocimientos geométricos en la resolución de problemas del mundo físico: medida y cálculo de longitudes, áreas, volúmenes, etc. Bloque 5. Funciones y gráficas. Interpretación de un fenómeno descrito mediante un enunciado, tabla, gráfica o expresión analítica. Análisis de resultados. La tasa de variación media como medida de la variación de una función en un intervalo. Análisis de distintas formas de crecimiento en tablas, gráficas y enunciados verbales. Estudio y utilización de otros modelos funcionales no lineales: exponencial y cuadrática. Utilización de tecnologías de la información para su análisis. 11

12 Bloque 6. Estadística y probabilidad. Identificación de las fases y tareas de un estudio estadístico a partir de situaciones concretas cercanas al alumnado. Análisis elemental de la representatividad de las muestras estadísticas. Gráficas estadísticas: gráficas múltiples, diagramas de caja. Uso de la hoja de cálculo. Utilización de las medidas de centralización y dispersión para realizar comparaciones y valoraciones. Experiencias compuestas. Utilización de tablas de contingencia y diagramas de árbol para el recuento de casos y la asignación de probabilidades. Utilización del vocabulario adecuado para describir y cuantificar situaciones relacionadas con el azar. Criterios de evaluación 1. Utilizar los distintos tipos de números y operaciones, junto con sus propiedades, para recoger, transformar e intercambiar información y resolver problemas relacionados con la vida diaria. Se trata de valorar la capacidad de identificar y emplear los números y las operaciones siendo conscientes de su significado y propiedades, elegir la forma de cálculo apropiada: mental, escrita o con calculadora, y estimar la coherencia y precisión de los resultados obtenidos. En este nivel adquiere especial importancia observar la capacidad de los alumnos para manejar los números en diversos contextos cercanos a lo cotidiano, así como otros aspectos de los números relacionados con la medida, números muy grandes o muy pequeños. 2. Aplicar porcentajes y tasas a la resolución de problemas cotidianos y financieros, valorando la oportunidad de utilizar la hoja de calculo en función de la cantidad y complejidad de los números. Este criterio va dirigido a comprobar la capacidad para aplicar porcentajes, tasas, aumentos y disminuciones porcentuales a problemas vinculados a situaciones financieras habituales y a valorar la capacidad de utilizar las tecnologías de la información para realizar los cálculos, cuando sea preciso. 3. Resolver problemas de la vida cotidiana en los que se precise el planteamiento y resolución de ecuaciones de primer y segundo grado o de sistemas de ecuaciones lineales con dos incógnitas. Este criterio va dirigido a comprobar que el alumno está preparado para aplicar las técnicas de manipulación de expresiones literales para resolver problemas que puedan ser traducidos previamente en forma de ecuaciones y sistemas. La resolución algebraica no se plantea como el único método de resolución y se combina también con otros métodos numéricos y gráficos y mediante el uso adecuado de las tecnologías de la información. 4. Utilizar instrumentos, fórmulas y técnicas apropiadas para obtener medidas directas e indirectas en situaciones reales. Se pretende comprobar el desarrollo de estrategias para calcular magnitudes desconocidas a partir de otras conocidas, utilizar los instrumentos de medida disponibles, aplicar las fórmulas apropiadas y desarrollar las técnicas y destrezas adecuadas para realizar la medición propuesta. 5. Identificar relaciones cuantitativas en una situación y determinar el tipo de función que puede representarlas. Este criterio pretende evaluar la capacidad de discernir a qué tipo de modelo de entre los estudiados, lineal, cuadrático o exponencial, responde un fenómeno determinado y de extraer conclusiones razonables de la situación asociada al mismo, utilizando para su análisis, cuando sea preciso, las tecnologías de la información. 6. Analizar tablas y gráficas que representen relaciones funcionales asociadas a situaciones reales para obtener información sobre su comportamiento. 12

13 A la vista del comportamiento de una gráfica o de los valores numéricos de una tabla, se valorará la capacidad de extraer conclusiones sobre el fenómeno estudiado. Para ello será preciso la aproximación e interpretación de las tasas de variación a partir de los datos gráficos o numéricos. 7. Elaborar e interpretar tablas y gráficos estadísticos, así como los parámetros estadísticos más usuales correspondientes a distribuciones discretas y continuas, y valorar cualitativamente la representatividad de las muestras utilizadas. Se trata de valorar la capacidad de organizar la información estadística en tablas y gráficas y calcular los parámetros que resulten más relevantes con ayuda de la calculadora o la hoja de cálculo. En este nivel se pretende, además, que tengan en cuenta la representatividad y la validez del procedimiento de elección de la muestra y analicen la pertinencia de la generalización de las conclusiones del estudio a toda la población. 8. Aplicar los conceptos y técnicas de cálculo de probabilidades para resolver diferentes situaciones y problemas de la vida cotidiana. Se pretende que sean capaces de identificar el espacio muestral en experiencias simples y en experiencias compuestas sencillas, en contextos concretos de la vida cotidiana, y utilicen la regla de Laplace, los diagramas de árbol o las tablas de contingencia para calcular probabilidades. Se pretende, además, que los resultados obtenidos se utilicen para la toma de decisiones razonables en el contexto de los problemas planteados. 9. Planificar y utilizar procesos de razonamiento y estrategias diversas y útiles para la resolución de problemas, y expresar verbalmente con precisión, razonamientos, relaciones cuantitativas e informaciones que incorporen elementos matemáticos, valorando la utilidad y simplicidad del lenguaje matemático para ello. Se trata de evaluar la capacidad de planificar el camino hacia la resolución de un problema, comprender las relaciones matemáticas que intervienen y elegir y aplicar estrategias y técnicas de resolución aprendidas en los cursos anteriores, confiando en su propia capacidad e intuición. Asimismo, se trata de valorar la precisión del lenguaje utilizado para expresar todo tipo de informaciones que contengan cantidades, medidas, relaciones, numéricas y espaciales, así como estrategias y razonamientos utilizados en la resolución de un problema. 13

14 Cuarto curso. Opción B Contenidos Bloque 1. Contenidos comunes. Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como la emisión y justificación de hipótesis o la generalización. Expresión verbal de argumentaciones, relaciones cuantitativas y espaciales y procedimientos de resolución de problemas con la precisión y rigor adecuados a la situación. Interpretación de mensajes que contengan argumentaciones o informaciones de carácter cuantitativo o sobre elementos o relaciones espaciales. Confianza en las propias capacidades para afrontar problemas, comprender las relaciones matemáticas y tomar decisiones a partir de ellas. Perseverancia y flexibilidad en la búsqueda de soluciones a los problemas y en la mejora de las encontradas. Utilización de herramientas tecnológicas para facilitar los cálculos de tipo numérico, algebraico o estadístico, las representaciones funcionales y la comprensión de propiedades geométricas. Bloque 2. Números. Reconocimiento de números que no pueden expresarse en forma de fracción. Números irracionales. Representación de números en la recta real. Intervalos. Significado y diferentes formas de expresar un intervalo. Interpretación y uso de los números reales en diferentes contextos eligiendo la notación y aproximación adecuadas en cada caso. Expresión de raíces en forma de potencia. Radicales equivalentes. Comparación y simplificación de radicales. Utilización de la jerarquía y propiedades de las operaciones para realizar cálculos con potencias de exponente entero y fraccionario y radicales sencillos. Utilización de la calculadora para realizar operaciones con cualquier tipo de expresión numérica. Cálculos aproximados. Reconocimiento de situaciones que requieran la expresión de resultados en forma radical. Bloque 3. Álgebra. Manejo de expresiones literales. Utilización de igualdades notables. Resolución gráfica y algebraica de los sistemas de ecuaciones. Resolución de problemas cotidianos y de otras áreas de conocimiento mediante ecuaciones y sistemas. Resolución de otros tipos de ecuaciones mediante ensayo-error o a partir de métodos gráficos con ayuda de los medios tecnológicos. Resolución de inecuaciones. Interpretación gráfica. Planteamiento y resolución de problemas en diferentes contextos utilizando inecuaciones. Bloque 4. Geometría. Razones trigonométricas. Relaciones entre ellas. Relaciones métricas en los triángulos. Uso de la calculadora para el cálculo de ángulos y razones trigonométricas. Aplicación de los conocimientos geométricos a la resolución de problemas métricos en el mundo físico: medida de longitudes, áreas y volúmenes. Razón entre longitudes, áreas y volúmenes de cuerpos semejantes. Bloque 5. Funciones y gráficas. Interpretación de un fenómeno descrito mediante un enunciado, tabla, gráfica o expresión analítica. Análisis de resultados. 14

15 La tasa de variación media como medida de la variación de una función en un intervalo. Análisis de distintas formas de crecimiento en tablas, gráficas y enunciados verbales. Funciones definidas a trozos. Búsqueda e interpretación de situaciones reales. Reconocimiento de otros modelos funcionales: función cuadrática, de proporcionalidad inversa, exponencial y logarítmica. Aplicaciones a contextos y situaciones reales. Uso de las tecnologías de la información en la representación, simulación y análisis gráfico. Bloque 6. Estadística y probabilidad. Identificación de las fases y tareas de un estudio estadístico. Análisis elemental de la representatividad de las muestras estadísticas. Gráficas estadísticas: gráficas múltiples, diagramas de caja. Análisis crítico de tablas y gráficas estadísticas en los medios de comunicación. Detección de falacias. Representatividad de una distribución por su media y desviación típica o por otras medidas ante la presencia de descentralizaciones, asimetrías y valores atípicos. Valoración de la mejor representatividad en función de la existencia o no de valores atípicos. Utilización de las medidas de centralización y dispersión para realizar comparaciones y valoraciones. Experiencias compuestas. Utilización de tablas de contingencia y diagramas de árbol para el recuento de casos y la asignación de probabilidades. Probabilidad condicionada. Utilización del vocabulario adecuado para describir y cuantificar situaciones relacionadas con el azar. Criterios de evaluación 1. Utilizar los distintos tipos de números y operaciones, junto con sus propiedades, para recoger, transformar e intercambiar información y resolver problemas relacionados con la vida diaria y otras materias del ámbito académico. Se trata de valorar la capacidad de identificar y emplear los distintos tipos de números y las operaciones siendo conscientes de su significado y propiedades, elegir la forma de cálculo apropiada (mental, escrita o con calculadora) y estimar la coherencia y precisión de los resultados obtenidos. En este nivel adquiere especial importancia observar la capacidad para adecuar la solución (exacta o aproximada) a la precisión exigida en el problema, particularmente cuando se trabaja con potencias, radicales o fracciones. 2. Representar y analizar situaciones y estructuras matemáticas utilizando símbolos y métodos algebraicos para resolver problemas. Este criterio va dirigido a comprobar la capacidad de usar el álgebra simbólica para representar y explicar relaciones matemáticas y utilizar sus métodos en la resolución de problemas mediante inecuaciones, ecuaciones y sistemas. 3. Utilizar instrumentos, fórmulas y técnicas apropiadas para obtener medidas directas e indirectas en situaciones reales. Se pretende comprobar la capacidad de desarrollar estrategias para calcular magnitudes desconocidas a partir de otras conocidas, utilizar los instrumentos de medida disponibles, aplicar las fórmulas apropiadas y desarrollar las técnicas y destrezas adecuadas para realizar la medición propuesta. 4. Identificar relaciones cuantitativas en una situación y determinar el tipo de función que puede representarlas, y aproximar e interpretar la tasa de variación media a partir de una gráfica, de datos numéricos o mediante el estudio de los coeficientes de la expresión algebraica. Este criterio pretende evaluar la capacidad de discernir a qué tipo de modelo de entre los estudiados, lineal, cuadrático, de proporcionalidad inversa, exponencial o logarítmica, responde un fenómeno determinado y de extraer conclusiones razonables de la situación asociada al mismo, utilizando para su análisis, cuando sea preciso, las tecnologías de la información. Además, a la vista del comportamiento de una gráfica o de los valores numéricos de una tabla, se valorará la capacidad de extraer conclusiones sobre el fenómeno 15

16 estudiado. Para ello será preciso la aproximación e interpretación de la tasa de variación media a partir de los datos gráficos, numéricos o valores concretos alcanzados por la expresión algebraica. 5. Elaborar e interpretar tablas y gráficos estadísticos, así como los parámetros estadísticos más usuales en distribuciones unidimensionales y valorar cualitativamente la representatividad de las muestras utilizadas. En este nivel adquiere especial significado el estudio cualitativo de los datos disponibles y las conclusiones que pueden extraerse del uso conjunto de los parámetros estadísticos. Se pretende, además, que se tenga en cuenta la representatividad y la validez del procedimiento de elección de la muestra y la pertinencia de la generalización de las conclusiones del estudio a toda la población. 6. Aplicar los conceptos y técnicas de cálculo de probabilidades para resolver diferentes situaciones y problemas de la vida cotidiana. Se pretende que sean capaces de identificar el espacio muestral en experiencias simples y compuestas sencillas, en contextos concretos de la vida cotidiana, y utilicen la regla de Laplace, los diagramas de árbol o las tablas de contingencia para calcular probabilidades. Se pretende, además, que los resultados obtenidos se utilicen para la toma de decisiones razonables en el contexto de los problemas planteados. 7. Planificar y utilizar procesos de razonamiento y estrategias de resolución de problemas tales como la emisión y justificación de hipótesis o la generalización, y expresar verbalmente, con precisión y rigor, razonamientos, relaciones cuantitativas e informaciones que incorporen elementos matemáticos, valorando la utilidad y simplicidad del lenguaje matemático para ello. Se trata de evaluar la capacidad para planificar el camino hacia la resolución de un problema, comprender las relaciones matemáticas y aventurar y comprobar hipótesis, confiando en su propia capacidad e intuición. También, se trata de valorar la precisión y el rigor del lenguaje utilizado para expresar todo tipo de informaciones que contengan cantidades, medidas, relaciones, numéricas y espaciales, así como estrategias y razonamientos utilizados en la resolución de un problema. 16

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

MÓDULO DE MATEMÁTICAS I Contenidos

MÓDULO DE MATEMÁTICAS I Contenidos Bloque 1. Contenidos comunes MÓDULO DE MATEMÁTICAS I Contenidos Utilización de estrategias y técnicas en la resolución de problemas tales como análisis del enunciado y comprobación de la solución obtenida.

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador

Más detalles

Criterios de Evaluación MÍNIMOS

Criterios de Evaluación MÍNIMOS s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver

Más detalles

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas

Más detalles

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO )

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO ) PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO 2015-2016) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. Criterio 1: Identificar

Más detalles

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos 4.1 CONTENIDOS PARA PRIMERO DE LA ESO Conceptos I. Aritmética y álgebra. 1. Números naturales. _ Significado y uso en distintos contextos. _ El sistema de numeración decimal. 2. Operaciones con los números

Más detalles

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O.

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. - Realizar operaciones básicas con números naturales. - Resolver problemas aritméticos con números naturales. - Calcular potencias y raíces cuadradas

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1º ESO CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1. Utilizar numeros naturales, enteros, fracciones y decimales sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad PROGRAMACIÓN DIDÁCTICA Materia IV Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Geometría plana y figuras geométricas Créditos 3 (30 horas) Bloque II Créditos Ecuaciones y sistemas 2 (20

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.

Más detalles

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo

Más detalles

4º E.S.O. Matemáticas A

4º E.S.O. Matemáticas A 4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con

Más detalles

UNIDAD 6: ECUACIONES OBJETIVOS

UNIDAD 6: ECUACIONES OBJETIVOS UNIDAD 6: ECUACIONES Conocer los conceptos de ecuación, así como la terminología asociada. Identificar y clasificar los distintos tipos de ecuaciones polinómicas en función de su grado y número de incógnitas.

Más detalles

Matemáticas de 2º de ESO

Matemáticas de 2º de ESO DISTRIBUCIÓN DE CONTENIDOS Bloque 1.- Contenidos comunes Matemáticas de 2º de ESO - Utilización de estrategias y técnicas simples en la resolución de problemas, tales como el análisis del enunciado, el

Más detalles

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES

Más detalles

EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO

EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO EXTRACTO DE LA PROGRAMACIÓN DOCENTE DEL DEPARTAMENTO DE MATEMÁTICAS CURSO 2010/2011 EDUCACIÓN SECUNDARIA OBLIGATORIA TERCER CURSO CRITERIOS DE EVALUACIÓN 1. Utilizar los números racionales, sus operaciones

Más detalles

UNIDAD 7. SISTEMA MÉTRICO DECIMAL

UNIDAD 7. SISTEMA MÉTRICO DECIMAL UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal

Más detalles

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1 BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números

Más detalles

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales. DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,

Más detalles

DEPARTAMENTO MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO MATEMÁTICAS. IES GALLICUM MATEMÁTICAS 2º E.S.O. UNIDAD I: EL NÚMERO ENTERO (16 Horas) 1.- Conocer y distinguir las distintas clases de números (naturales y negativos). (1, 6) 2.- Realizar con soltura operaciones con los números

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS CRITERIOS DE EVALUACIÓN Y LOS

VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS CRITERIOS DE EVALUACIÓN Y LOS VINCULACIÓN DE LAS COMPETENCIAS BÁSICAS CON LOS Y LOS 1 MATERIA: MATEMÁTICAS CURSO: 1.º de la ESO N.º 1. COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA N.º 1 Utilizar los números para recibir y producir información

Más detalles

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*

Más detalles

Resolución de problemas de funciones y gráficas por estudiantes de 3º de E.S.O.

Resolución de problemas de funciones y gráficas por estudiantes de 3º de E.S.O. Máster de Formación del Profesorado de Educación Secundaria Obligatoria y Bachillerato, Formación Profesional y Enseñanza de Idiomas Trabajo Fin de Máster Ámbito Matemáticas Resolución de problemas de

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS

CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS CICLO: TERCERO NIVEL: SEXTO ÁREA: MATEMÁTICAS CRITERIOS DE EVALUACIÓN INDICADORES COMPETENCIAS C.E.3.1. En un contexto de resolución de problemas sencillos, anticipar una solución razonable y buscar los

Más detalles

CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017

CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017 SEGUNDO BÁSICO 2017 DEPARTAMENTO ÁMBITO NUMÉRICO 0-50 - Escritura al dictado - Antecesor y sucesor - Orden (menor a mayor y viceversa) - Patrones de conteo ascendente (2 en 2, 5 en 5, 10 en 10) - Comparación

Más detalles

15. Utilizar elementos básicos de la geometría en diferentes situaciones cotidianas

15. Utilizar elementos básicos de la geometría en diferentes situaciones cotidianas MATEMATICAS 1º 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información. Se trata de comprobar la

Más detalles

CRITERIOS DE EVALUACIÓN DE PRIMERO DE ESO

CRITERIOS DE EVALUACIÓN DE PRIMERO DE ESO CRITERIOS DE EVALUACIÓN DE PRIMERO DE ESO Aplicar las propiedades fundamentales de la multiplicación. Diferenciar entre división exacta y entera y realizar ambas de forma correcta. Utilizar la propiedad

Más detalles

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades

Más detalles

CONTENIDOS MÍNIMOS DE ESO PARA LA EVALUACIÓN DE SEPTIEMBRE 2016

CONTENIDOS MÍNIMOS DE ESO PARA LA EVALUACIÓN DE SEPTIEMBRE 2016 CONTENIDOS MÍNIMOS DE ESO PARA LA EVALUACIÓN DE SEPTIEMBRE 2016 DEPARTAMENTO DE MATEMÁTICAS CRITERIOS DE CALIFICACIÓN. En cada uno de los tres periodos de evaluación se realizará al menos un examen escrito.

Más detalles

Planificación Matemeatica 4

Planificación Matemeatica 4 Planificación Matemeatica 1 Numeración Reconocer el carácter convencional e histórico de los sistemas de numeración. Conocer la estructura y organización del sistema de numeración decimal. Conocer las

Más detalles

CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD

CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD Clasificar los tipos de caracteres y las variables estadísticas para una determinada población. Elaborar tablas de frecuencias absolutas, relativas

Más detalles

MATEMÁTICAS 2º ESO 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA

MATEMÁTICAS 2º ESO 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA 1ª evaluación De toda la materia DEPARTAMENTO MATERIA CURSO MATEMATICAS MATEMÁTICAS 2º ESO 2º ESO 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA Realiza en su cuaderno las tareas de clase y las propuestas

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

PROGRAMACIÓN DIDÁCTICA

PROGRAMACIÓN DIDÁCTICA PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Los números enteros y fraccionarios. Créditos 3 (30 horas) Bloque II Proporcionalidad y álgebra. Áreas y perímetros

Más detalles

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 IES SAN BENITO Departamento de Matemáticas 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 PRUEBA EXTAORDINAORIA: La Prueba de septiembre será únicamente de contenidos

Más detalles

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 1.6 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.

Más detalles

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución

Más detalles

SECRETARIA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARIA DE PLANEACIÓN DIRECCIÓN DE EVALUACIÓN TABLA DE ESPECIFICACIONES PARA CONSTRUIR REACTIVOS

SECRETARIA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARIA DE PLANEACIÓN DIRECCIÓN DE EVALUACIÓN TABLA DE ESPECIFICACIONES PARA CONSTRUIR REACTIVOS DRECCÓN DE EALUACÓN TABLA DE ESPECFCACONES PARA CONSTRUR REACTOS ECUACO NES Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las con venciones para repre sentar números fraccio

Más detalles

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática HORAS SEMANALES: NIVEL: 2 Medio. Título Subtítulo

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática HORAS SEMANALES: NIVEL: 2 Medio. Título Subtítulo PLANIFICACIÓN ANUAL SUBSECTOR: Matemática HORAS SEMANALES: 4 0 5 NIVEL: 2 Medio OBJETIVOS Objetivos Fundamentales Objetivos Transversales Unidades Contenidos Título Subtítulo Aprendizaje Esperado Tiempo

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

CONTENIDOS CRITERIOS DE EVALUACIÓN 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE 1.- Realizar operaciones y cálculos

CONTENIDOS CRITERIOS DE EVALUACIÓN 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE 1.- Realizar operaciones y cálculos CÓD.: C.E.I.P. César Manrique Cabrera PROGRAMACIÓN LARGA CONTENIDOS- CRITERIOS DE EVALUACIÓN DEL ÁREA DE MATEMÁTICAS. CURSO 2013-2014 CONTENIDOS CRITERIOS DE EVALUACIÓN 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE

Más detalles

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL MATEMÁTICAS VII. (1er BIMESTRE) INSTITUTO CHAPULTEPEC MIDDLE SCHOOL. 2009-2010 1) SIGNIFICADO Y USO DE LOS NÚMEROS a) Lectura y escritura de números naturales. - Operaciones con números naturales. - Problemas

Más detalles

MATEMÁTICAS 2º E.S.O

MATEMÁTICAS 2º E.S.O MATEMÁTICAS 2º E.S.O Desarrollado en Decreto 23/2007, de 10 de Mayo. B.O.C.M. Núm 126; 29 de Mayo de 2007. PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 13 1. Y... 3 1 Números

Más detalles

5º Básico. Objetivos de Aprendizaje a Evaluar:

5º Básico. Objetivos de Aprendizaje a Evaluar: Royal American School. Objetivos de Aprendizajes, habilidades y contenidos incorporados en Prueba de Relevancia de Matemática de 5º Básico a 8º Básico I Semestre Año 2013. 5º Básico Objetivos de Aprendizaje

Más detalles

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución de problemas Fracciones y Números

Más detalles

CONTENIDOS, CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE EVALUABLES.

CONTENIDOS, CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE EVALUABLES. ESO Matemáticas 2 CONTENIDOS, CRITERIOS DE EVALUACIÓN Y ESTÁNDARES DE APRENDIZAJE EVALUABLES. BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS - Planificación del proceso de resolución de problemas.

Más detalles

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico.

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. OBJETIVOS 1. Reconocer las etapas del trabajo científico y elaborar informes

Más detalles

COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE

COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE COLEGIO HELVETIA PROGRAMA DE MATEMÁTICAS GRADO ONCE 201-2015 OBJETIVO GENERAL: Entender las bases conceptuales de función, el problema del infinito, así como sus aplicaciones a otras áreas del conocimiento

Más detalles

PLANIFICACIÓN ANUAL NM3 TERCERO MEDIO

PLANIFICACIÓN ANUAL NM3 TERCERO MEDIO PLANIFICACIÓN ANUAL NM3 TERCERO MEDIO TERCER AÑO FORMACIÓN GENERAL OBJETIVOS FUNDAMENTALES CONTENIDOS MINIMOS SUGERENCIAS DE ACTIVIDADES. Los alumnos y las alumnas desarrollarán la capacidad de : Resolver

Más detalles

SECUENCIACIÓN DE CONTENIDOS

SECUENCIACIÓN DE CONTENIDOS DEPARTAMENTO DE SECUENCIACIÓN DE CONTENIDOS 0. Todos aprendemos de todos 0.1. Números de hasta siete cifras 0.2. Suma, resta, multiplicación y división 0.3. Fracciones y sus términos 0.4. Números decimales

Más detalles

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Rige a partir de la convocatoria

Rige a partir de la convocatoria TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DEL PROGRAMA: I y II Ciclo de la Educación General Básica Abierta Este documento está elaborado con

Más detalles

Nombre y apellidos Nº EXAMEN TEMA 3. ECUACIONES, INECUACIONES Y SISTEMAS 4º E.S.O.

Nombre y apellidos Nº EXAMEN TEMA 3. ECUACIONES, INECUACIONES Y SISTEMAS 4º E.S.O. 1.- Resuelve las siguientes ecuaciones (1p): a) 2x 2 50 = 0 b) 7x 2 + 5x = 0 2.- Resuelve la siguiente ecuación bicuadrada (1p): x 4 10x 2 + 9 = 0 3.- Resuelve el sistema de ecuaciones por cualquiera de

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema

Más detalles

Distribución anual de saberes de Matemática para Segundo Ciclo según NAP CUARTO GRADO 1 TRIMESTRE. En relación con el número y las operaciones:

Distribución anual de saberes de Matemática para Segundo Ciclo según NAP CUARTO GRADO 1 TRIMESTRE. En relación con el número y las operaciones: CUARTO GRADO 1 TRIMESTRE Números Naturales * El reconocimiento y uso de los números naturales, de la organización del sistema decimal de numeración y la explicitación de sus características, en situaciones

Más detalles

1. CONTENIDOS BÁSICOS:

1. CONTENIDOS BÁSICOS: 1. CONTENIDOS BÁSICOS: Los contenidos básicos exigibles a la finalización del curso serán: BLOQUE 0: CONTENIDOS COMUNES 1. Emisión y justificación de hipótesis. 2. Generalización de resultados. 3. Expresión

Más detalles

Tablas de contenidos Matemática PDN segundo semestre 2016

Tablas de contenidos Matemática PDN segundo semestre 2016 Tablas de contenidos Matemática PDN segundo semestre 2016 Kinder 1 Relaciones lógico-matemática Cuantificación Seriación Patrón Clasificación Comparación Orientación Espacial Cuantificación Cardinalidad

Más detalles

Borrador del temario de la guía PAA. PRIMERA PARTE: RAZONAMIENTO VERBAL.

Borrador del temario de la guía PAA. PRIMERA PARTE: RAZONAMIENTO VERBAL. Borrador del temario de la guía PAA. PRIMERA PARTE: RAZONAMIENTO VERBAL. -Razonamiento verbal. -Sinónimos. -Antónimos. -Estructura de una oración. -Conectores de una oración. -Uso adecuado de la sintaxis

Más detalles

Guía Temática de Matemática

Guía Temática de Matemática Guía Temática de Matemática 1 Matemática Maya Sistema de numeración Maya: Fundamento filosófico, origen y significado de los símbolos, características principales Relación del Sistema Vigesimal con el

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

Curso 2015/16. ANEXO III: UNIDADES DIDACTICAS REFUERZO DE MATEMÁTICAS Dpto. de Matemáticas. IES Galileo Alhaurín de la Torre

Curso 2015/16. ANEXO III: UNIDADES DIDACTICAS REFUERZO DE MATEMÁTICAS Dpto. de Matemáticas. IES Galileo Alhaurín de la Torre Curso 2015/16 ANEXO III: UNIDADES DIDACTICAS REFUERZO DE MATEMÁTICAS Dpto. de Matemáticas IES Galileo Alhaurín de la Torre ÍNDICE 1. REFUERZO DE MATEMÁTICAS 1º ESO 2 2. REFUERZO DE MATEMÁTICAS 2º ESO 17

Más detalles

MATEMÁTICA DE CUARTO 207

MATEMÁTICA DE CUARTO 207 CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.

Más detalles

PROGRAMACIÓN DIDÁCTICA

PROGRAMACIÓN DIDÁCTICA PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Números racionales, decimales y potencias. Créditos 3 (30 horas) Bloque II Proporcionalidad Créditos 2 (20 horas)

Más detalles

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 3.2.4 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.

Más detalles

MATEMÁTICAS 4º E.S.O Opción A

MATEMÁTICAS 4º E.S.O Opción A MATEMÁTICAS 4º E.S.O Opción A Desarrollado en Decreto 23/2007, de 10 de Mayo. B.O.C.M. Núm 126; 29 de Mayo de 2007. PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 14 1. Y...

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2010.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2010. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2010. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

Activ. 1: Buscando figuras planas (1 sesión)

Activ. 1: Buscando figuras planas (1 sesión) IES EL PASO MATEMÁTICAS 3º ESO INTRODUCCIÓN El interés por descubrir elementos geométricos en el entorno, despertará en el alumnado la inquietud por aspectos matemáticos intrínsecos. El material para el

Más detalles

COMPETENCIA MATEMÁTICA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA

COMPETENCIA MATEMÁTICA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA 1. DESCRIPCIÓN DE LA COMPETENCIA La competencia matemática consiste en la habilidad para utilizar y relacionar los números, sus operaciones básicas, los símbolos

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2013. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 DEPARTAMENTO: MATEMÁTICAS MATERIA: MATEMÁTICAS ACADÉMICAS CURSO: 3º ESO OBJETIVOS DEL ÁREA DE MATEMÁTICAS A LAS ENSEÑANZAS ACADÉMICAS 3º ESO

Más detalles

COMUNICADO DE MATEMÁTICAS. 1º curso EDUCACIÓN SECUNDARIA OBLIGATORIA Primer ciclo

COMUNICADO DE MATEMÁTICAS. 1º curso EDUCACIÓN SECUNDARIA OBLIGATORIA Primer ciclo COMUNICADO DE MATEMÁTICAS 1º curso EDUCACIÓN SECUNDARIA OBLIGATORIA Primer ciclo Según el currículo del Principado de Asturias 2015 LOMCE IES FERNÁNDEZ VALLÍN de GIJÓN DEPARTAMENTO DE MATEMÁTICAS Contenidos

Más detalles

MATEMÁTICAS 1º E.S.O.

MATEMÁTICAS 1º E.S.O. MATEMÁTICAS 1º E.S.O. UNIDAD 1: LOS NÚMEROS NATURALES CONTENIDOS Los números naturales Origen y evolución de los números. Sistemas de numeración aditivos y posicionales. El conjunto de los números naturales.

Más detalles

Programación de Matemáticas de Segundo Curso de Educación Secundaria Obligatoria. Objetivos de las Matemáticas en la Educación Secundaria Obligatoria

Programación de Matemáticas de Segundo Curso de Educación Secundaria Obligatoria. Objetivos de las Matemáticas en la Educación Secundaria Obligatoria Programación de Matemáticas de Segundo Curso de Educación Secundaria Obligatoria El real decreto 1631/2006, de 29 de diciembre, publicado el 5 de enero, por el que se establecen las enseñanzas mínimas

Más detalles

S E C U N D A R I A MATEMÁTICAS

S E C U N D A R I A MATEMÁTICAS S E C U N D A R I A Bloque 1. Operaciones con números naturales, decimales y fraccionarios y expresiones algebraicas. PRIMER GRADO Aplica en la resolución de problemas algunas propiedades de los números

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

ADMISIÓN 2016

ADMISIÓN 2016 7º BÁSICO ARITMÉTICA: MATEMÁTICA Números Naturales y subconjuntos (primos 'D0 pares - compuestos, etc.) Reglas de divisibilidad Mínimo común múltiplo y máximo común divisor (Cálculo y problemas) Operatoria:

Más detalles

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

DIBUJO TÉCNICO BACHILLER

DIBUJO TÉCNICO BACHILLER DIBUJO TÉCNICO BACHILLER OBJETIVOS DEL DIBUJO TÉCNICO La enseñanza de Dibujo Técnico en el Bachillerato tendrá como finalidad el desarrollo de las siguientes capacidades: - Utilizar adecuadamente y con

Más detalles

Partiendo de los criterios de evaluación de cada uno de los cursos se han definido los indicadores de logro para cada uno de ellos.

Partiendo de los criterios de evaluación de cada uno de los cursos se han definido los indicadores de logro para cada uno de ellos. E) IDENTIFICACIÓN DE LOS CONOCIMIENTOS Y APRENDIZAJES NECESARIOS PARA QUE EL ALUMNO ALCANCE UNA EVALUACIÓN POSITIVA AL FINAL DE CADA CURSO DE LA ETAPA. INDICADORES DE LOGRO O DESEMPEÑO. Partiendo de los

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001

PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001 INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno

Más detalles